History and Theory of Global Positioning Satellites Term Paper

Download this Term Paper in word format (.doc)

Note: Sample below may appear distorted but all corresponding word document files contain proper formatting

Excerpt from Term Paper:

Global Positioning Satellites

The History of Global Positioning Satellites

The First Global Positioning Satellite

Transmission Functions of the Global Positioning Satellites

Reception of Information from Global Positioning Satellites

Advantages of the Global Positioning Satellites System

Introduction to the Global Positioning Satellites

As the name suggests, the global positioning satellite system is based on satellites. It is a navigational system that comprises of a complex arrangement of satellites that orbit round the earth. Twenty-four in all, these satellites are eleven thousand nautical miles far in space. There are six dissimilar orbits wherein the satellites continually keep revolving. It takes these satellites twenty-four hours to complete two orbital revolutions round the Earth. Upon calculation, the revolutionary speed of these satellites is computed to be around 2,600 meters per second (JA-GPS.com).

The radius of every orbit of the global positioning satellites is approximately 25,000 kilometers from the center of the earth, making them 20,000 kilometers above the planet's crust. The orbital route of global positioning satellites places them approximately between North and South latitudes of 60 degrees each (JA-GPS.com).

Life expectancy of each satellite of the global positioning system is around ten years. As a result, periodic substitution is a recurring process whereby new global positioning satellites are constructed and introduced into the respective orbital. All necessary replacements until the year 2006 have been planned and financially provided for in the Global Positioning System (JA-GPS.com).

The Theory of the Global Positioning Satellites

The technology behind the global positioning satellites system takes its origin from Marconi's comprehension of the radio waves and their utilization for transmission purposes. This radio wave technology was employed for social advantage in the course of 1920s. In these years, radio stations were established, which minimally required a receiver to commence operation. A complex model of the same simple technology applies to the functioning of the global positioning satellites system.

After World War II, most developed nations realized the need for keeping up to the minute inside knowledge of each other. As a result, huge amounts of money were spent towards the development and reinforcement of radio transmission technology. More than that, the need for timely communications led to the development of advanced systems for the transmission and reception of radio waves.

The space exploration that began simultaneously with the advancement of satellites and rockets propelled the development, marking an open avenue for the establishment of a global positioning system that was not disturbed by climatic, geographical and evolutionary changes in global conditions, and whose efficiency sustained unaffectedly.

Early satellites and special radio receivers implanted in the applications connected to the satellites were product of these advancements. The global positioning satellites system is a descendant of such innovation. The remarkable technology that enables reception of radio signals from the 20,000 kilometers distant global positioning satellites system by small portable, pocketsize gadgets is the finest depiction of the theory (JA-GPS.com).

The History of Global Positioning Satellites

The First Global Positioning Satellite

The other name for satellites of the global positioning system is NAVSTAR satellites. The first global positioning satellite was launched in February of 1978. The satellite measured about five meters in breadth and weighed roughly around one ton. The energizing solar panels extended on both sides with the transmission power minimally not beyond fifty watts. Later satellites of the global positioning system were constructed on the same parameters (Federal Radio Navigation Plan, 1994).

Transmission Functions of the Global Positioning Satellites

Every global positioning satellite communicates on three frequencies. The known frequency that the global positioning satellites use for civilian services is known as the "L-1" frequency, measuring 1575.42 MHz (JA-GPS.com).

The orbital radius and path of the global positioning satellites ideally locate them at a place wherefrom satellite signals can be received at any time, by any point on the globe (PBS, 1998). At the North and South poles, the global positioning satellites are not directly overhead, but their signals can be received. However, this slightly affects the accuracy of the satellite signals.

The global positioning satellites transmit signals that contain three kinds of information (Federal Radio Navigation Plan, 1994): the almanac data, ephemeris data, and pseudo-random codes.

The almanac data informs the actual and prospective position of each satellite of the global positioning system to the system's receivers at their requested time of the day. Along with the satellite position, this data also reveals the details on orbital revolution of the satellites in the system. This information is available for any particular…[continue]

Cite This Term Paper:

"History And Theory Of Global Positioning Satellites" (2002, November 18) Retrieved October 22, 2016, from http://www.paperdue.com/essay/history-and-theory-of-global-positioning-139101

"History And Theory Of Global Positioning Satellites" 18 November 2002. Web.22 October. 2016. <http://www.paperdue.com/essay/history-and-theory-of-global-positioning-139101>

"History And Theory Of Global Positioning Satellites", 18 November 2002, Accessed.22 October. 2016, http://www.paperdue.com/essay/history-and-theory-of-global-positioning-139101

Other Documents Pertaining To This Topic

  • Satellite Communication With Mars Satellite

    These include Omni, CCSDS, Hi-DSN and SpaceVPN. OMNI and CCDS will be briefly considered, with the focus on CCSDS, as this architecture has been shown to be the most appropriate for satellite communication with Mars. OMNI Omni or the Operating Missions as Nodes on the Internet (OMNI) is an architecture proposed by NASA to provide the most simple and most effective infrastructure for space missions. Central to this architecture is the

  • Plate Tectonics Theory

    Plate Tectonics Theory The story of Plate Tectonics is the story of continents drifting from place to place, breaking apart, colliding, and grinding against each other (Story pp). It is also the story of terrestrial mountain ranges rising up while being pushed together, of oceans opening and closing, of undersea mountain chains girdling the planet like seams on a baseball, and of violent earthquakes and fiery volcanoes (Story pp). Plate Tectonics

  • Game Theory How the Irrational

    So-called n-person games include more than two actors or sides….The central problem is that the rational decision for an individual actor such as a state may be to 'defect' and go it alone as opposed to taking a chance on collaboration with another state actor" as did Israel and the ascent of the Likud after Arafat's refusal of the 2000 peace deal (Beavis 2010). Yet saber-rattling no longer seems

  • Geolocation Technology and Privacy Issues

    Geolocation of the user based on the user's Internet protocol (IP) address. Location-based service companies that specialize in identity protection use this approach, and IP addresses, blocks of IP addresses and credit card billing addresses can all be used to develop a location profile. 2. Personal computer/web browser identification examines the hypertext transfer protocol (HTTP) browser header and other information from the user's computer or device, and compares them to

  • Albert Einstein Historical and Scientific

    Einstein also had a unique way of viewing the universe. He did not see open space as empty space. He wrote, "Physical objects are not in space, but these objects are spatially extended (as fields). In this way the concept 'empty space' loses its meaning" (Einstein qtd. On Space and Motion). He thought the physical reality of space was simply a representation of different coordinates of space and time. Part

  • Eastcompeace Strategic Management Data Presentation

    To evaluate weak areas of the current strategy and propose solutions for improvement. 2.0 LITERATURE REVIEW 2.1 Introduction According to Zou and Cavusgil (1995), the subject of global strategy has attracted a lot of attention in the recent past. Zou and Cavisgil (1995) calim that a major reason behind this has been the increasing progress in the telecommunications and other technological areas that has brought the world closer and transnational existence of organizations Eastcompeace

  • Aeronautics Degree Program as Enrolled

    The student has provided research on various vibration analytic techniques such as the use of Laser Vibrometry for Damage Detection using Lamb Waves in discovery processes to detect microcracks. Outcome 3. The Information Literacy competency was satisfied through the research efforts made by the student through data gathering regarding aircraft structures and vibrations qualification techniques retrieved from the MIL-STD-810F and NASA Langley Research Laboratory. Techniques include Fatigue Damage Spectrum (FDS)

Read Full Term Paper
Copyright 2016 . All Rights Reserved