Expert Systems and Neural Networks
The Development and Limitations of Expert Systems and Neural Networks
The human experience demands a constant series of decisions to survive in a hostile environment. The question of "fight or flight" and similar decisions has been translated into computer-based models by using the now-famous "if-then" programming command that has evolved into the promising field of artificial intelligence. In fact, in their groundbreaking work, Newell and Simon (1972) showed that much human problem solving could be expressed in terms of such "if-then" types of production rules. This discovery helped to launch the field of intelligent computer systems (Coovert & Doorsey 2003). Since that time, a number of expert and other intelligent systems have been used to model, capture, and support human decision making in an increasingly diverse range of disciplines; however, traditional rule-based systems are limited by several fundamental constraints, including the fact that human experts are needed to articulate propositional rules, that the symbolic processing normally used prevents direct application of mathematics, and that traditional rule-based systems require a large number of rules that are not receptive to unique data inputs. This paper provides an examination of the concepts and technologies needed to develop, implement and integrate expert systems and neural networks. The limitations of expert systems and their alternatives are discussed, followed by an analysis of the relevant and scholarly literature covering neural networks. A summary of the research is provided in the conclusion.
Review and Discussion
Background and Overview. Artificial Intelligence (AI) as a formal discipline is certainly not new, having been around for more than 50 years (Gozzi 1997). Nevertheless, AI remains a term that frequently "conjures images of HAL's refusal to open the pod bay doors or Deep Blue winning the world chess championship. But artificial intelligence (or Al) is not a phenomenon restricted to science fiction movies and chess tournaments; it has rapidly, if silently, become a fixture of daily life" (Gibson 2003:83). In fact, Kapoor (2003) emphasizes that there can be no dispute that machines with greater-than-human intelligence will be built in the next 50 years, and the creation of such AI empowered creations will have far-reaching implications for all aspects of society, science, technology, and the environment.
According to Kapoor, "The likelihood of creating AI within the next 50 years, and when it happens, its deep impacts on science and society, are both assertions that will be accepted by most futurists" (788). Bostrom (2003) covers the phenomenal increases in number-crunching capacity of supercomputers that have followed Moore's law, including IBM's biggest and best, Blue Gene that operates at 1 quadrillion operations per second which is scheduled to become operational by the end of 2005. This author notes that he is in agreement with Kapoor concerning "the tragedy of the vast unfair inequalities that exist in today's world, and also in regard to the fact that there would be considerable risks involved in creating machine intelligence"; however, this author suggests that AI assistive technologies might also serve to reduce certain other kinds of risk.
For instance, Bostrom says:
An assessment of whether machine intelligence would produce a net increase or a net decrease in overall risk is beyond the scope of my original paper or this reply. (Even if it were to be found to increase overall risk, which is very far from obvious, we would still have to weigh that fact against its potential benefits. And if we determined that the risks outweighed the benefits, we would then have to question whether attempting to slow the development of machine intelligence would actually decrease its risks, a hypothesis that is also very far from obvious (902).
While the goals of individual practitioners using AI applications have varied and changed over time, a reasonable characterization of the general field of AI is that it is intended to make computers do things that when done by people are described as having indicated intelligence (Steels 1995); this author characterized the primary goals of AI as both the construction of useful intelligent systems and the understanding of human intelligence. According to Gozzi (1997), "In the 1950s, a group of scientists decided to try to provide the computer with intelligence. Their goal seemed attainable due to a common metaphorical identification of the computer with a brain. From their efforts emerged the field of artificial intelligence, or AI" (219).
This author suggests that the basic, or root metaphors of AI, resembled a classical syllogism:
Major Premise: The computer is a brain.
Minor Premise: Thinking is computing.
Conclusion: If we provide the computer with sophisticated programs, it will develop a mind similar to human...
Artificial Intelligence What is AI? Future of AI The Expert System What is an Expert System? Three Major Components of an Expert System Structure of an Expert System Neural network Fuzzy Logic Chaos Engineering Field and Benefit Debate on Comparison Artificial Intelligence (AI) and the Expert System Defined Consulting applies a knowledge-based system to commercial loan officers using multimedia (Hedburg 121). Their system requires a fast IBM desktop computer. Other systems may require even more horsepower by using exotic computers or workstations. The
Information Technology on the Healthcare sector Healthcare systems serve to perform the very important function of preserving human capital. In modern society, health care assumes significance not just in terms of the expenditure it generates, but also because it is a large-scale consumer of goods and services, important employer and contributes in research and development. From the perspective of countries, maintaining and improving health care services require significant investments. Consequently
The circulatory or cardiovascular system is responsible for moving nutrients, wastes and gases between body cells, transporting blood across the whole body and battling disease (Circulatory System). Its principal elements are the heart, numerous blood vessels, and blood. The heart forms the circulatory system's core. This 2-sided, 4-chambered pump which distributes blood to various arteries comprises of the right and left ventricles, and right and left atria. The ventricles, situated within
Portfolio Management In the project portfolio management context, a portfolio is an aggregation of active programs, projects and other business activities that indicate an organization's priorities, investments and allocation of resource (The standard for portfolio management, 2008). According to the editors of PM Network, "Portfolio management is the centralized management of one or more of those portfolios to achieve specific strategic business objectives" (2008, p. 75). Using project portfolio management
Attaining Knowledge: Why throwing a baseball would not be possible for a neural network. Learning how to throw a baseball occurs in stages. First, someone, usually a parent instructs a young child on the basic process of throwing the ball, before the child is scheduled to participate in a game. The child is first shown the basic motion as to how to curve his or her body when tossing the baseball,
Negative feedbacks and criticisms cannot be avoided at this point, especially upon knowing that it is necessary for them to undergo training on how this program will be implemented, including its advantages for them as teachers. Educators, especially those who have been practicing the profession for a long time have a greater tendency to abhor going through the learning process once more. As a principal, they should be encouraged to
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now