Such a model has no parameters.
A third possibility is the semiparametric model [3]. In such a model, parameters are present, but there are very weak assumptions about the distribution form of the observed data. Semiparametric models are often regarded as nonparametric and studied as such. The distinction, originating in the 1960's, is however increasingly common among statisticians. Robust procedures are required for both non- and semiparametric models because of the weak assumptions upon which they depend.
II. KAPLAN-MEIER ESTIMATOR (KME)
The Kaplan-Meier Estimator is used to calculate survival rate for subjects of a certain type. The survival rate is monitored, and the probability of continued future accessibility is calculated on a year-by-year basis. The survival rate can then be applied to larger population sizes in order to determine the likelihood of future year-by-year survival [7].
Such studies are complicated by subjects dying or becoming inaccessible for reasons other than those being studied. This incurs a significant amount of uncertainty, which cannot be controlled [7]. The Kaplan-Meier procedure refers to subjects who become unavailable for such reasons as censored. They nonetheless remain part of the study in order to maintain the integrity of the global population and concurrent information.
The creators of the Kaplan-Meier estimator then determined that, while censored subjects remain as part of the study, they should be deleted from the number at risk for the next time period. They are then included once again for a later time period.
It is emphasized that the Kaplan-Meier procedure does not apply only to biological or indeed lifetime survival. It can also apply to accessibility, or the likelihood of a machine to maintain its performance for a number of years. It can also apply to the success rate of a certain action, and so on.
Because of its nature as an estimator of the survival function, one of the common applications of the Kaplan-Meier Estimator is medical science. The estimator lends itself well to this field, so that estimated survival times can be communicated to patients and family members. It can however also be applied to the shelf life of certain medicines or the success rate of certain procedures. As an estimator of these functions, the Kaplan-Meier estimator has favorable properties, including self-consistency, strong consistency, and asymptotic normality. An inherent problem is however the step-function of the estimator, necessitating a search for a smoothing function. This has led to studies that combine the kernel density estimator with the Kaplan-Meier estimator [4].
A recent suggestion has been the use of Bivariate survival time data in combination with the Kaplan-Meier procedure in order to smooth the data estimates. Bivariate survival time data refers to datasets where a set of two organs or limbs are estimated; such as time to visual loss in the left and right eyes, and so on. When censoring occurs, the above-mentioned nonparametric estimation becomes important for the bivariate survival function.
While the Kaplan-Meier estimator is generally univariate, the bivariate version allows for wider and smoother applications. At the time of the referenced article, there has not been a large amount of research into smooth versions of the bivariate survival function as this applies to the Kaplan-Meier estimator.
Kernel smoothing and Bezier smoothing are suggested as useful techniques for smoothing the Kaplan-Meier estimator and its data estimates. Kernel smoothing is popular and well-known in density estimation, while Bezier smoothing is popular in computational...
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now