Alternative Fuels as Well as essay

Download this essay in word format (.doc)

Note: Sample below may appear distorted but all corresponding word document files contain proper formatting

Excerpt from essay:

A similar method, called gas-to-liquids (GTL), which also uses the FT process, is receiving a lot of attention these days.

In this method, natural gas is used as the feedstock. Waste or natural gas that cannot be marketed is partially oxidized into CO and H2 gases. This synthesis gas is then supplied to a synthesis unit to similarly produce a liquid fuel. The development of synthetic jet fuels to augment petroleum fuels is becoming reenergized with the U.S. Government's Total Energy Development (TED) program. The technical hurdles for a pure synthetic jet fuel are not insurmountable, but manufacturers and regulatory agencies will still need to evaluate and test these fuels before approving them for unlimited use. (Daggett, Hendricks, Walther and Corporan, 2008)

The work of Altman (2007) entitled: "Alternative Fuels in Commercial Aviation: The Need, the Approach, Progress" states that the commercial need drivers for alternative fuels are those of: (1) price; (2) availability; (3) energy independence; and (4) environmental issues and (5) the need to meet safety specifications. (Altman, 2007)

Stated as well is a need for the commercial aviation alternative fuels initiative to work together with DoD/DOE to pursue alternative fuels for the purpose of: (1) securing a stable fuel supply; (2) furthering research and analysis; (3) quantifying the ability to reduce environmental impacts; and (4) improving aircraft operations. (Altman, 2007)

Altman (2007) states that alternative aviation fuel options identified for consideration are the following: (1) Near-Term (0-5 years) -- Fischer-Tropsch fuel from coal; (2) Mid Term (5-15 years) - oil shale and other HC:LNG, ethanol blends, and biodiesel; hydrogen for fuel cells in APUs; and (3) Far Term (15+ years) -- Biomass: black liquor fuels; and hydrogen fuel for turbine engines. (Altman, 2007)

Stated as the need for alternative fuels in aviation is the supply of stability for operators. Stated as the approach for alternative fuels in commercial aviation is the United Aviation Supply Chain via CAAFI process. Progress for commercial aviation use of alternative fuels is near-term FT qualification, long-term renewables, and always environmental gains. (Altman, 2007) the following three charts, labeled Figure 1 and Figure 2 in this study list the development and qualification status of Fischer Tropsch Derived Aviation Fuels and Sason Fully Synthetic Aviation Fuels respectively.

Figure 1

Fischer Tropsch Derived Aviation Fuels: Development and Qualification Status

Source: Altman (2007)


Sason Fully Synthetic Fuel: Development and Qualification Status

Source: Altman (2007)

The following illustration has been adapted from the work of Altman (2007) in his factsheet concerning the environment of alternative aviation fuels.

Figure 3

Aviation Fuel Alternatives/Environment

Source: Altman (2007)

Altman states in his alternative fuels environment analysis a specified full life cycle assessment process which is related in the following adapted illustration of Altman (2007) labeled Figure 4 in this study.

Figure 4

Source: Altman (2007)

The Alternative Fuels Roadmap as cited in the work of Altman lists the following goals for alternative fuel use in aviation.

Figure 5

Alternative Fuels Roadmap

Source: Altman (2007)

It is reported by the NASA Glenn Research Center in the work entitled: "Early Demonstration Opportunities for Electric Propulsion & Power" that current gas turbine APUs operate at ~15% load cycle efficiency, contribute up to 20% of the aircraft ground-based emissions, and APU/secondary power systems account for 50% of the maintenance delays which present 12% of the maintenance cost.

SOFC is stated to offer the following: (1) solid state characteristics making them simpler in concept and design; (2) Greater fuel flexibility and simpler fuel reforming enabling the transition from petroleum to hydrogen economy; (3) Higher quality heat effluent making them particularly suitable for hybrid gas turbine systems with the highest potential system efficiencies, (4) Inherently environmentally friendly, producing no/negligible NOx and significantly reduced CO2 with hydrocarbon levels; and (5) Suitability to multiple markets spanning stationary, transportation, aerospace, and military applications, facilitating DOE, DOD and NASA collaboration. (Liang, nd)

Major challenges cited by NASA for implementation of alterative fuels in aviation include those of: (1) ultra high energy density power source; (2) fuel cell stack configuration; (3) fuel processing & reforming; (4) thermal management; (5) nano, light material systems; (6) high voltage power & control; and (7) multidisciplinary CFD. (Liang, nd)

Current NASA activities are stated to include those as follows: (1) Develop compact, lightweight, and efficient jet-fuel processing technology to enable near-term application of SOFCs to aircraft power systems with collaboration from DOE: (a) obtain a fundamental understanding of SOFC reforming process and to access SOFC and system integrators for technology advancement, performance system optimization; and (b) identify and characterize promising candidate hydrocarbon fuels by developing a fundamental data base of chemical kinetic reaction rates and high temperature characteristics; (2) Improve SOFC material capabilities to meet aircraft performance, size, weight and life requirements: (a) improve power density through a combination of reducing anode thickness by a factor of 10-15 and reducing electrochemical losses by developing new and improved cathode material; and (b) improved, durable high temperature seal. (Liang, nd) the following illustration labeled Figure 5 in this study shows NASA's vision for fuel cell powered aircraft.

Figure 5

NASA's Vision for Fuel Cell Powered Aircraft

Source: Liang (nd)

Summary & Conclusion

Presently the alternative fuel initiatives are pressing forward in hopes of use of these fuels in the near- mid- and long-term and in various phases of implementation and geared toward sustainability and profitability of commercial aviation. Driving these initiatives are factors of price, availability, energy dependence, environmental issues and the need to meet safety standards.


Altman, Richard L. (2007) Alternative Fuels in Commercial Aviation the Need, the Approach, Progress. 32 ndAnnual FAA Forecasting Conference Commercial Aviation Alternative Fuels Initiative Friday, March 16, 2007. Online available at:

Daggett, David L., Hendricks, Robert C., Walther, Rainer, and Corporan, Edwin (2008) Alternate Fuels for Use in Commercial Aircraft. NASA STI Program. Online available at:

Kemp, Rene (nd) Technology and the Transition to…[continue]

Some Sources Used in Document:


Cite This Essay:

"Alternative Fuels As Well As" (2009, September 22) Retrieved December 9, 2016, from

"Alternative Fuels As Well As" 22 September 2009. Web.9 December. 2016. <>

"Alternative Fuels As Well As", 22 September 2009, Accessed.9 December. 2016,

Other Documents Pertaining To This Topic

  • Alternative Fuel Vehicles Alternative Fueled

    I do that every day. But I've never done that with a car. I buy what I need to look successful. Besides, how would I ever calculate a payback when I have no idea what gasoline will cost in the future?" A few said with apparent certainty, "one year" or "two years." However, when we inquired where the number came from, they simply asserted that they spent lots of

  • Alternative Fueled Vehicles an Analysis

    Few hydrogen fueling stations exist, and it will cost billions to build an infrastructure that will make FCVs practical. Critics say that hydrogen is difficult to store and that producing the hydrogen makes FCVs less efficient than other types of alternative vehicles, such as electric or natural-gas-powered cars. Even though FCVs may represent the future of the industry, they are still not practical for most applications. However, the hybrid technology and biodiesel

  • Alternative Fuel Cars the Best Way That

    Alternative Fuel cars The best way that we can approach this complex subject is by differentiating the different types of fuels that the cars use since each fuel requires a different type of car and each fuel, accordingly, has its particular advantages and disadvantage. Biodiesel cars- Biodiesal vehicles combine petroleum gasoline with vegetable oils. Their benefits lie in the fact that these fuels produce fewer carbon emissions and reduced harmful particulates than

  • Reasoning for Alternative Fuels All Other Things

    Reasoning for Alternative Fuels All other things being equal, the energy source with the lowest cost will always be pursued after in the cargo transportation world. The supremacy of petroleum-derived from fuels is an outcome of the comparative ease with which they can be stored and competently used for the internal combustion engine vehicle. Other types of fossil fuels (propane, natural gas and methanol) can be used as transportation fuels

  • Government Subsidies and Alternative Fuel Technologies the

    Government Subsidies and Alternative Fuel Technologies The government should not subsidize alternative fuel options. This is due to the fact that a free market that follows the basic supply and demand curve should be allowed to function as a product of the available technology. This is to say that fossil fuels and other related fuels will continue to stay in demand as long as there is a supply of them and

  • Alternative Energy Sources Concerns That Have Been

    Alternative Energy Sources Concerns that have been raised regarding energy security have been occasioned by fears about oil and other fossil fuel depletion; reliance on foreign sources of energy; geopolitics; developing countries' energy needs; environmental concerns; population dynamics; and renewable and other alternative energy sources (Shah, 2011). This essay seeks to establish whether alternative energy sources can help ease human reliance on oil. It is important that governments invest on alternative sources

  • Alternative Energy Source Alternative Energy Alternative Energy

    Alternative Energy Source Alternative energy Alternative energy refers to the energy sources that have no undesired impact and they are renewable since they are generated by fuel sources and they restore themselves over a short period of time and do not diminish and are not derived from fossil fuels. They include solar energy, wind energy, geothermal, biomass, biogas and hydro electric power. These types of energy have a significant potential to reduce

Read Full Essay
Copyright 2016 . All Rights Reserved