Internet In Response To The Term Paper

Length: 11 pages Sources: 14 Subject: Education - Computers Type: Term Paper Paper: #61803821 Related Topics: Honeywell, Internet Protocol, Nasa, Computers And The Internet
Excerpt from Term Paper :

This lead was accomplished through a partnership nearly a half-century old among government, industry and academia. I member of that partnership was the National Science Foundation (NSF). As Strawn noted, early on, scientists and engineers at American universities began to join the young ARPANet, as they worked on basic research funded primarily by the NSF. Acknowledging this, the NSF began supporting national supercomputing centers, in the mid-1980s, as a means of giving American scientists, engineers, and students greater access to high-performance computing that was state of the art, and developed Computer Science Network (CSNET).

Creation of these national supercomputer centers by NSF was critical to the development of the Internet. To further enhance U.S. scientists' access to these centers, NSF established the NSFNET national backbone network that connected the NSF supercomputing centers to U.S. universities. NSF also promoted the creation of regional networks to connect colleges and universities to the NSFNET. When the NSF-supported regional networks sought additional members from the private sector, one of the great technology transfer successes of all time was set in motion (Strawn).

And, as all of this really was instigated with the Soviet Union's early lead in the Space Race, it is not a surprise that NASA too had a hand in development of the Internet.

NASA's Ames Research Center was connected to ARPANET as one of the early IMPs, in 1971.

In 1983, NASA provided seed money to connect the Space Physics Analysis Network (SPAN) to DECnet.

Three years later, NASA provided additional seed money to "connect Earth scientists with TCP/IP to 10 sites with a digital 56-kbps backbone using router technology" ("NASA's Contributions"). And, the NASA Science Network (NSN) was formed.

It would be also in this year that NASA, DARPA, DOE, and NSF partnered to establish 2 Federal Internet Exchanges (FIXes), with NASA providing the seed money. And, by 1989, NSN and SPAN are consolidated to form the NASA Science Internet (NSI), that reaches 15,000 scientists globally, with a 1.5-Mbps multi-protocol routed backbone.

Those truly responsible for the development were the early presidents with the unwavering need to ensure America's technological superiority, DARPA under the direction of the Department of Defense, the NSF, NASA, research institutions, and academic institutions who truly brought the concept to life. These were the individuals and organizations that quickly capitalized on the opportunities presented to them by this new technology. In contrast, it wouldn't be until 1993 that then President Clinton and then Vice President Al Gore even had e-mail address ("NASA's Contributions").

Hardware and Software Differences Between Then and Now:

The very beginnings of ARPANET, and therefore the Internet, and the variety of technology can be seen in the first four nodes connected in 1969.

The Network Measurement Center at UCLA was selected as the first node, due to Kleinrock's early development of packet switching theory. Engelbert's project on 'Augmentation of Human Intellect' including NLS, an early hypertext system, conducted at Stanford Research Institute, became the site for the second node. The final two nodes were added at UC Santa Barbara and the University of Utah, both with unique computing technologies, but by the end of 1969, all four were networked ("A Brief History").

Originally, ARPANET (and thus the Internet) was based on arbitrarily designed multiple independent networks. Today, the Internet still embodies this critical technical idea - open architecture networking. With open architecture, individual network technology is not dictated, but can be selected by the provided and made to interwork with the other networks via meta-level 'Internetworking Architecture'. With an open architecture network, the individual networks can be uniquely designed, with their own unique interface, offering it to their users or even offering it to other providers, such as other Internet providers. In this way, each network can be developed with the specific environment and unique user requirements, of that network, in mind ("A Brief History").

Where the open architecture of networking has remained a constant since the beginning of the Internet, the hardware has changed dramatically.

The first four computers connected to the ARPANET were quite diverse. They included: Honeywell DDP 516 computer at UCLA, SDS-940 computer at SRI, IBM 360/75 at UC Santa Barbara, and DEC PDP-10 at the University of Utah (Bellis).

As an example of the typical computing power, the Honeywell was a professional computer, with a processing speed of 1.1 Mhz, and 32 Kb of RAM ("Honeywell"). Today, personal computers can easily have 2 Ghz processing speed and 1 Gig or more of RAM.

But, perhaps it's the new hardware that is the most significant difference since the beginning of the Internet. As noted, where professional computers used by researchers and academics and the military were the first users of the ARPANET, today's Internet is available to nearly everyone. It is not uncommon to have homes with multiple computers connected to the Internet, with children and adults using them for work, school...


In addition, a variety of Internet appliances have been developed, making society evermore connected including: PDAs, laptops, and cellular phones, taking the Internet almost everywhere.

The Impact of the Internet:

Increases in computing power, decreases in computing technology costs, and the widespread usage of the Internet has forever changed the way humans conduct business, enjoy their leisure time, and interact in general.

However, despite this pervasiveness of technology and the Internet specifically, there is a Digital Divide that has been created. This Digital Divide refers to the differences between those with easy access to information and digital technology, as Mehra, Merkel, and Bishop note, those who have access to computers and the Internet and those who do not.

Congress has worked hard to bridge this Digital Divide. For four years they've worked on legislation addressing this challenge, and have just recently passed a technology bill for Minority Serving Institutions (MSIs). The Minority Serving Institution Digital and Wireless Technology Act authorized $250 million for the first year of a multi-year program to build technology infrastructure and deliver training and resources to instructors and students at MSIs (Dervarics).

Nearly every aspect of life has been affected by the proliferation of the Internet. It is now easier than ever to access information. Literally details on nearly every topic under the sun are now only a few short keystrokes away, making traditional print encyclopedias obsolete. Personal information is easier to access as well, access to bank and other accounts are also available 24 hours a day, 7 days a week. Shopping, communicating with family and friends, even the advent of telecommuting have all changed because of the Internet. However, with this has also led to challenges as well, as the less scrupulous take advantage of the new technology, with sexual predators and online identity theft new crimes that have arisen along with the advantages of the Internet.


In the end, the Internet was developed out of competition to be the best, when the Cold War was in full swing. Unwilling to let the Soviet Union remain in the technological lead after their successful launch of Sputnik, the United States formed DARPA, whose ARPANET would eventually evolve into today's Internet.

Today, the Internet has changed the way society interacts, forever intertwining technology and everyday life.


Bellis, M. Inventors of the Modern Computer. 2007. November 7, 2007

Brief History of the Internet. 10 Dec 2003. Internet Society. November 7, 2007

Cold War. 2003. National Park Service. November 7, 2007

DARPA Over the Years. 27 Oct 2003. DARPA. November 7, 2007

Dervarics, C. "High-Tech Help on the Way." Issues in Higher Education 24(18) 18 Oct 2007: pp. 14-15. Professional Development Collection. EBSCOHost. University of Phoenix, Phoenix, AZ. November 7, 2007

DISN Data Services. 11 Oct 2007. Defense Information Systems Agency. November 7, 2007

Hauben, M. Behind the Net: The Untold History of the ARPANET. No date. Antonio Cardosa Costa. November 7, 2007

History and Mission. 26 Sept 2007. RAND. November 7, 2007

Licklider, J.C.R. & Taylor, R. "The Computer as a Communication Device" reprinted from Science and Technology. Apr 1968. November 7, 2007

Mehra, B., Merkel, C., & Bishop, A. "The Internet for Empowerment of Minority and Marginalized Users." New Media and Society (6). 2004: pp. 781-802.

NASA's Contributions to the Growth of the Internet. Sept 1997. NASA. November 7, 2007

No Credit Where it's Due." Wired Magazine. 11 Mar 1999. November 7, 2007

Perera, D. "The Great Wall." Government Executive 38(3) Mar 2006: pp. 15-18. MasterFILE Premier. EBSCOHost. University of Phoenix, Phoenix, AZ. November 7, 2007

Smith, J. "The Making of the Internet." World Trade 20(6) Jun 2007: p. 62. MasterFILE Premier. EBSCOHost. University of Phoenix, Phoenix, AZ. November 7, 2007

The Space Race. No date. November 7, 2007

Strawn, G. Statement Before the House Commerce Committee Subcommittee on Telecommunications, Trade and Consumer Protections. 10 Jun 1998. National Science Foundation. November 7, 2007

Sources Used in Documents:


Bellis, M. Inventors of the Modern Computer. 2007. November 7, 2007

Brief History of the Internet. 10 Dec 2003. Internet Society. November 7, 2007

Cold War. 2003. National Park Service. November 7, 2007

DARPA Over the Years. 27 Oct 2003. DARPA. November 7, 2007

Cite this Document:

"Internet In Response To The" (2007, November 07) Retrieved August 1, 2021, from

"Internet In Response To The" 07 November 2007. Web.1 August. 2021. <>

"Internet In Response To The", 07 November 2007, Accessed.1 August. 2021,

Related Documents
Internet Abuse in Universities Why
Words: 1663 Length: 5 Pages Topic: Education - Computers Paper #: 9121519

At the bottom line, the issue at hand is with the sanctity and safety of the students and the responsibility of the university to preserve and develop that. Moreover, many of these students are dallying into multi-dimensional virtual worlds that are beginning to closely resemble the physical world and that are having their own ethical issues arise (Wankel & Malleck, 2010). Universities need to educate themselves as to what those

Internet Security, Risks Internet Security Presents Field
Words: 4724 Length: 15 Pages Topic: Education - Computers Paper #: 20437974

Internet Security, risks internet security presents field information technology implementing solutions address challenges. The paper 15 pages length ( including title reference page). 1. Title Page: Include, paper title, title, instructor's, date. Internet security In today's advanced technological world, online users are faced with a myriad of problems and risks. Any online user is vulnerable to Trojans, viruses, worms, spyware, and malware. The user is exposed to sniffers, spoofing software, and phishing.

Internet Censorship and Freedom of Expression
Words: 2943 Length: 10 Pages Topic: Education - Computers Paper #: 34984048

Internet Censorship The internet came to prominence as a tool and pursuit of the masses starting in the early 1990's. The capabilities, depth and breadth of what the internet has to offer have increased exponentially over the ensuing two decades. Such expansion has greatly eased the spread of information (Palfrey, 2010). The ease in which people communicate and disseminate information has created a cause for concern among many different parties that

Internet As Social Media: Connectivity
Words: 1656 Length: 4 Pages Topic: Education - Computers Paper #: 98779870

In sum, arguments against the use of social media on the Internet for new and different useful information fail to recognize at least 9 ways in which social media on the Internet greatly assist businesses in obtaining new and useful different information. 3. Conclusion Social media on the Internet provides businesses with new and different useful information. There are at least 9 ways in which this is accomplished, because Internet social

Internet Searching for Information on Google Is
Words: 596 Length: 2 Pages Topic: Education - Computers Paper #: 56768974

Internet Searching for information on Google is like trying to find a needle in a haystack. Is that true? Was the library of the 19th century more efficient? Explain. Google makes searching easy by typing in search terms in the browser. When search terms are searched in the browser, it brings up a list of items from the search terms. This makes the searching in Google much easier to find what the

Internet Staffing the Advent of
Words: 2656 Length: 10 Pages Topic: Education - Computers Paper #: 22464277

Job availability also increased in finance and insurance, professional and technical, real estate and retail trade industries. Monster's new index fills a gap that has existed in tracking online help-wanted ads, said founder Jeff Taylor. The online index "really becomes more relevant as we begin to move into recovery" of the economy, he said (Medill 2004)." The article goes on to contend that the other internet-recruiting firms such as