¶ … Mining
The process of extracting new information from existing information through the use of computer system is called Text Mining. Text mining retrieves data of available information and establishes the connection between the facts mentioned in that data. This is how, new information is developed. Since it is newly formed information, its validation is conducted through experimentation. The process of web search is often confused with that of text mining, though these are two entirely different processes. In web search, the computers match the keywords in the database and bring the relevant records. The information is written down by somebody and then uploaded on the internet to make it searchable. On the other hand, in text mining, altogether new information is generated out of existing body of knowledge (Berry, 2004).
Text mining finds its roots in data mining. Data mining refers to the process in which the computer system retrieves unique information from the existing database. Hence text mining is also named as Text Data Mining. Other names for text mining are Intelligent Text Analysis and Knowledge-Discovery in Text (KDD). It extracts the interesting information out of unstructured text. Data mining from unstructured information has high value in the emerging field of text mining. It is because of readily availability of unstructured data and its large volume. Text mining enjoys the perception of high commercial value as more than 80% of the information is stored in the form of text and can be explored to generate new body of knowledge. In addition to data extraction, text mining includes computational linguistics, statistics and machine learning as well (Berry, 2004).
Knowledge Discovery from Database (KDD) is enjoying portion of eminence in the field of emerging applications, like Text Understanding. It works through extracting both implicit and explicit concepts from the existing data and then forming semantic relations among the concepts. It is done with the help of Natural Language Processing Techniques commonly known as NLP Techniques. KDD when combined with NLP discovers useful information though knowledge management, information extraction, machine learning, statistics and reasoning (Navathe et al., 2000).
As mentioned earlier, data mining and text mining are somewhat similar concepts. The only difference lies in the type of data explored and the tools used. Data mining works well with highly structured data only, while text mining is applicable for semi-structured or unstructured data as well. The unstructured data includes HTML files, full-text documents and emails. In this perspective, it becomes more preferable to the companies. But there is also an aspect which prevents the use of text mining. This hindrance is the dependence on NLP. It is because natural language was not meant for computer systems initially nor it is developed for this purpose. Because of this issue, structured data and data mining practices are more prevalent in the field of research and development (Navathe et al., 2000).
The obstacles posed by computers system in regard of NLP does not exist in case of human beings. The human beings can easily comprehend the language patterns and can even distinguish between the various ones applied in the same text. The examples are contextual meanings, the slangs and spelling variation in a database. The computer systems are not yet equipped with the capability of linguistic patterns identification quickly (Weiguo, 2005).
A collection of documents is provided to the text mining tool. After exploring them, it selects one particular document to identify its character set and format. After this phase, it starts analyzing the text mentioned in the document. It repeatedly applies various techniques to extract information from the database. The presented example quote three techniques of text analysis, however, there be many others based on the combination of these techniques. It basically depends upon the organizational goals, which provide guidelines about the data to be extracted. The retrieved data is inserted in the organizational management information systems so that the end users may retrieve it for their use (Weiguo, 2005).
Statement of the problem
There is a gap in the literature regarding the text information extraction from a huge database.
Purpose of the study
The study investigates how to extract a specific phrase from a text. It employs survey techniques to interview experts in the field and assesses results using coding techniques.
Rationale of the study
It is important to note that several research studies related to text extraction have been carried out. However, no research has focused on the evaluating text information extraction in large datbases...
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now