¶ … Statistics
What I Learned About Statistics
The most important thing that I have learned about statistics is that there is no reason to be afraid. Prior to studying statistics and statistical methods many students view statistics as being extremely difficult, dense, and nearly impossible to understand. After learning about the various types of statistics, analyses, hypothesis testing, and so forth it becomes quite clear that statistics is a logical discipline that begins with basic assumptions and building blocks and then builds upon them more advanced and practical methods of understanding the world.
At the basic level descriptive statistics serve as the foundation for the entire field (Black, 2011). Descriptive statistics summarize data, data being observations of the world that are given quantitative values (Tanner & Youssef -- Morgan, 2013). The most commonly used sets of descriptive statistics are measures of central tendency and measures of dispersion (Tanner & Youssef -- Morgan, 2013).
Measures of central tendency describe how sets of data have a propensity to "clump" or gather towards the middle of a distribution of observations or scores. The three major measures of central tendency are (Runyon, Coleman, & Pittenger, 2000): the mode, which is the most commonly occurring score in a distribution of scores or observations; the median, which is the single score that cuts the distribution in half (50% of the scores are above and 50% of the scores are below the median, and; the mean, which is the arithmetic average of the scores in a distribution (Black, 2011).
Each of these measures of central tendency is useful depending on the type of data involved; however, the mean is by far the most relevant in its application. The median is more appropriate when data is ordinal and the mode is more appropriate when data is discrete (Tanner & Youssef -- Morgan, 2013). Nonetheless all these measures of central tendency are useful and in the special case of the normal distribution all of these measures of central tendency are always the same value (Tanner & Youssef -- Morgan, 2013).
The other important descriptive statistic involves understanding how the observations in the distribution or data set are spread around a measure of central tendency and are spread throughout the distribution. Here there are several potential measures such as the range and its variations (interquartile range and so forth), the variance, and the standard deviation. The range is typically calculated by subtracting the smallest observation from the largest observation in a distribution; it is the distance between the smallest and largest scores in the distribution (or between some other designated cut points; Tanner & Youssef -- Morgan, 2013). The variance is the average of the squared differences between the mean and all of these scores in a particular distribution, whereas the standard deviation is a square root of the variance (Tanner & Youssef -- Morgan, 2013). The standard deviation is the most widely reported measure of dispersion and helps to visualize the shape of a distribution with larger standard deviations being more spread out and smaller standard deviations representing distributions that are more tightly packed around the mean (Runyon, Coleman, & Pittenger, 2000).
All of these descriptive statistics are very important and represent the first step in understanding the use of statistics. Descriptive statistics allow for the understanding of how data or observations are shaped and summarize their general characteristics; however, one cannot make inferences regarding the comparison of the different distributions of scores or variables using descriptive statistics alone (Tanner & Youssef -- Morgan, 2013). In order to understand how different distributions of scores relate to each other and compare the researcher must use inferential statistics which allow for a further comparison of different distributions of scores (Tabachnick & Fidell, 2012).
There are several different categories of inferential statistics including bivariate and multivariate inferential statistics. Bivatiate statistics are statistics that look at the relationships between two different variables (typically an independent and dependent variable) and include such things as correlation coefficients to test for linear associations between variables, t-tests to test for the differences between two groups on an independent variable, and one -- way ANOVA to test for differences on one independent variable with more than two groups (Runyon, Coleman, & Pittenger, 2000).
Multivariate statistics include such tests as multiple regression and factorial ANOVA that allow researchers to examine relationships between more than two different independent variables, dependent variables, or more than two of both. These analyses can be very complex and often...
Working with Inferential Statistics Discussion In seeking to determine whether children exposed to movies created prior to the year 1980 caused more injuries than children who were exposed to movies after the year 1980, we formulate our null and alternative hypothesis as below: H0:µ before 1980=µ after 1980 H1:µ before 1980 ? µ after 180 µ is the mean of injuries The level of significance ?=0.05 From the result derived from the SPSS software at 95% confidence
inferential statistics to evaluate sample data. Inferential Statistics are used to determine whether one can make statements where the results reflect that would happen if we were to conduct the experiment again with multiple samples. With inferential statistics, you are trying to reach conclusions that extend beyond the immediate data alone via inference. For instance, inferential statistics infer from the sample data what the population might think. Another example, inferential
In this way, true experimental research attempts to control for all confounding variables, or at least consider their impact, while attempting to determine if the treatment is what truly caused the change. Note that individual background variables such as sex and ethnicity do not satisfy the requirements of true experimental design since they cannot be purposively manipulated in this way (Practical assessment research and evaluation). True experiments are different from
inferential statistic tests used in study. What were these tests typically used for? Why were they chosen here? The objective of the study was to analyze the true costs of hypertensions. The researchers did this by analyzing the data of four patient groups using propensity score matching to control for possible bias in cost estimates. The regression model that followed estimated for costs of hypertension by controlling for sex, length
Inferential Statistics and Their Discontents The notion of conducting statistical testing is increasingly important because of the significance testing is the basis of statistics. Inferential statistics is an important part of this process despite the necessity of descriptive statistics, which help in data exploration and interpretation. Actually, one of the most important aspects of inferential statistics is significance testing largely because this is what statistics are centered on. Generally, inferential statistics
Inferential Statistics: Decision Modeling Decision Modeling: Inferential Statistics Decision models are important components of inferential statistics. They are crucial in helping researchers choose the most appropriate statistical test to use for their study. This text presents the various steps involved in decision modeling, and uses two studies to demonstrate how such models can be used to guide the decision on what test to use. Decision Models in Inferential Statistics Decision models play a crucial
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now