Precalculus With Limits by Ron Larson
This book as well as the other two books are for college freshman level or college introductory level mathematics courses. The strengths of the book are mainly focused on its layout. For example, the book has a great way to demonstrate a varied and large amount of information easily and simply. This means that people reading the text just have to look for certain visual cues like colors or pictures that will point the information they seek. For example, the diagrams have a different background color than the text. All of this removes time spent looking for things. The use of bold also further differentiates the text, highlighting key words, phrases and things to memorize.
The weaknesses are in lack of context surrounding the topics and footnotes. Another book reviewed has footnotes and yet another provides adequate background for each topic. This book sacrifices breadth for efficiency. Although that is fine if people do not wish to see the whole picture of mathematics and in particular precalculus, it may not be as helpful for those that do. This is a small weakness as the book also provides many other features available online. However, it would be worth noting in future editions that the author should include footnotes and additional context for students to get a better grasp of the various topics and equations
B.
The first two chapters of the book cover functions and their graphs and polynomial and rational functions. Topics covered are rectangular coordinates, combinations of functions, composite functions, quadratic models and functions, and complex numbers. It is followed by a chapter summary, review exercises, chapter test, and proof in mathematics. This is a very well detailed book offering multiple ways for readers to learn and understand the equations and problems offered in the text. The terms are written clearly with many kinds of visual aids.
For example, in Chapter 1, "Functions and Their Graphs," the problems and exercises are labeled and highlighted through the use of colorful red boxes and bold text. Allowing differentiation between text and spatial area provides those that do the problems and read the chapters with a way to navigate faster. The chapter summary also provides what is learned from the chapter sections as well as offers explanation/examples and where to get review exercises. It is so easy to simply go and review the chapter from the chapter summary by quickly reading what points are covered and then looking for the review exercises.
C.
The third edition of this textbook offers a layout that is even more colorful than the other Larson math textbook. It also includes a summarize feature, located at the end of every section that helps students organize the lesson's key concepts and puts it into a concise summary, offering an excellent and valuable study tool. The other two texts did not have this new feature and the inclusion of colorful graphs also provided enough variety to keep a reader from getting bored with the subject material.
The book also has revised exercise sets as well as data spreadsheets that can be downloaded from the website detailed in the book and various checkpoint problems to allow readers to participate while reading. This book, unlike the others, seems like an interactive book. The features are not completely available in the other Larson book and makes reading and learning more dynamic. It also offers in its beginning pages' instructor resources which are not found in the other Larson book to the extent that was found here. Student resources are made available below that small section and images placed strategically throughout the chapters on each page make for increased variety in layout and visual appeal.
An Introduction to Linear Algebra by L. Mirsk
A.
There are several strengths with this book. It is done in the traditional way with few pictures and visual cues. Therefore, it mainly focuses on equations, theorems, and interpretations. The references used throughout each chapter are neatly organized in the footnotes. Various definitions are used for the topics allowing students to grasp and see completely what they mean and within what context. There is enough material to go and examine for one's self the equations as well as the various meanings behind the terms expressed in these equations.
The weaknesses are lack of exercises, chapter summaries, visual cues, pictures, and differentiation of text. They layout is too simple. It also does not offer any online resources. It is more concerned with demonstrating the mathematics and theorems than providing...
Nctm.org/publications/jrme.aspx?ekmensel=c580fa7b_116_412_btnlink)isa peer-reviewed journal of current research on what concepts work for students in the classroom and also allows for the submission of teacher manuscripts on relevant topics. The Journal of Online Mathematics and its Applications (http://mathdl.maa.org/mathDL/4/)includesdiscussion of how to teach math to students, such as the use of 'spinners' when teaching probability, to cite one example, and webcasts about 'best practices' in math education. Because the journal is web-based and makes
For instance, classical mathematicians by definition rely on Plato's theory of forms as the underlying basis of their mathematical worldview. The Platonist assumes the existence of true, immutable, and universal forms and structures that the mathematician approaches through the language of numbers and equations. For instance, the classical mathematician holds to the Platonic belief in the expansion of pi; to approach the expansion of pi from any other perspective
It is now recognized that individuals learn in different ways -- they perceive and process information in various ways. The learning styles theory suggests that the way that children acquire information has more to do with whether the educational experience is slanted toward their specific style of learning than their intelligence. The foundation of the learning styles methodology is based in the classification of psychological types. The research demonstrates that,
culture affects the way students learn mathematics, and how different cultures learn differently. Students in Korea and Japan learn differently than students in the United States for a number of reasons. Statistically, Asian students seem to do better at mathematics than American children do, and they way they learn their mathematics at an early age may be on reason this is so. Identification and Investigation US students often show lower test
Convergent questions seek one or more very specific correct answers, while divergent questions seek a wide variety of correct answers. Convergent questions apply to Bloom's lower levels of Knowledge, Comprehension, and Application and may include questions like "Define nutrition," "Explain the concept of investing," and "Solve for the value of X." Divergent questions apply to Bloom's higher levels of Analysis, Synthesis, and Evaluation; are generally open-ended; and foster student-centered discussion,
Components of a Quality Curriculum An Annotated Bibliography Quality Curriculum The research indicates that a quality school curriculum is reflected by the curricula of its mathematics and science components, driven by its textbooks and teachers, and may improve if a variety of domains are included (e.g., music and the arts). But math and science curricula appear useful predictors of the overall quality of a school curriculum. In addition, students exposed to better learning
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now