Debating The Ethics Of Stem Cell Research Thesis

Length: 15 pages Sources: 15 Subject: Genetics Type: Thesis Paper: #40902729 Related Topics: Invitro Fertilization, Stem Cell Research, Bioethics, Cell
Excerpt from Thesis :

Ethics of Stem Cell Research

Stem Cell Research Ethics

The Ethics of Stem Cell Research: A Nursing Perspective

The Ethics of Stem Cell Research: A Nursing Perspective

When the world-famous cloned sheep, Dolly, was euthanized at the relatively young age of 6-1/2 years she was suffering from advanced aging and lung disease (Meek, 2003). In human years, Dolly was only about 40-years old and had been suffering from arthritis for many years. This outcome is consistent with the claims of some scientists that current cloning technology does not accurately replicate natural sexual reproduction and disproportionately generates debilitating and sometimes lethal genetic defects. Dolly was the product of somatic cell nuclear transfer (SCNT), which involved removing the DNA from a sheep somatic (adult) cell, inserting it into an egg, and then transferring the egg to a receptive womb. This technology is very similar to what is currently being developed by stem cell researchers, especially the induced pluripotent stem cells (iPSCs) derived from adult human tissue. What Dolly's demise reveals, however, is that this technology is far from perfected.

On the other hand, adult stem cells have been successfully harvested and used clinically for decades (O'Meara et al., 2014). Bone marrow transplants are the obvious example, but the clinical use of stem cell technology continues to expand in many directions. Sarah Hancox, age 27 and a senior nurse at the Queen's Medical Centre and City Hospital in Nottingham, plans to donate the umbilical cord blood (UCB) harvested during the birth of her child. Two recently opened cord blood banks at the hospital where she works makes this a convenient process and she is excited about the opportunity to help relieve the suffering of very ill patients she encounters as a nurse. The stem cells isolated from her cord blood could be used to reconstitute bone marrow in a leukemia patient, for example, after the patient has undergone chemotherapy or radiation treatment to destroy the endogenous hematopoietic stem cells (O'Meara et al., 2014). This technique has become so successful that the number of procedures conducted at the Basel University Hospital in Switzerland, over the past four decades, has increased from 109 during the first decade to 939 during the past decade. In addition, the mortality rate from allogeneic hematopoietic stem cell transplantation has declined from 43 to 22% over the same period, while the risk of treatment failure has been cut in half. These improvements have occurred despite the eventual inclusion of older patients, patients with more advanced disease, and the increasing use of mismatched donor/host transplantations.

The above two examples highlight the sometimes vast divide between what is occurring in stem cell research laboratories and in medical clinics, but the magnitude of this difference will shrink over time as science advances. Scientists, however, cannot and should not provide answers to the often contentious ethical issues raised by stem cell technology. The ethical issue of human cloning was catapulted into the world's imagination by the birth of Dolly and subsequent unsubstantiated claims of successful human cloning (e.g., Borger, 2002), but a more immediate concern, for example, is the use of discarded in vitro fertilization embryos as a source of pluripotent stem cells for research and medicine. Nurse Hancox is excited about donating her cord blood to help cancer patients and therefore has no ethical problems with this technology, but would she be just as excited about donating eggs for stem cell research or would she have strong ethical reservations? In the past, both cord blood and excess in vitro fertilized embryos were discarded, so what is the difference ethically between these two sources of stem cells?

This research paper will attempt to provide guidance for nursing professionals who are facing or will face the ethical...


In order to accomplish this task, the history of stem cells in science and medicine, the different types and sources of stem cells that have been discovered, and the many ethical issues this technology has created, will be reviewed and discussed. The overall goal is to provide enough information for nursing professionals so that they can make up their own minds what stem cell technologies and research goals are ethically acceptable.

History of Stem Cell Research

The interest in pluripotent cells has been around for quite some time, but in 1954 this interest transformed into experimentation (Solter, 2006). During that year researchers were able to isolate teratocarcinomas from the 129 mouse strain. Culturing these cells in vitro produced a wide variety of differentiated cell types within the same culture dish, such as nervous tissue, organs, skin, hair, and heart. The term teratocarcinoma was derived from the Greek word 'teratos,' which means monster. What is significant about this type of tumor is that a single cell derived from the tumor was shown to be capable of generating multiple cellular phenotypes normally arising from the three germ layers: mesoderm, endoderm, and ectoderm. This ability is called 'pluripotency', which is one of the criteria used to define stem cells. The pluripotent capacity of these cells suggests that they represent a very early developmental stage of embryogenesis.

Further experimentation revealed that not all cells derived from a teratoma are as pluripotent as others (Solter, 2006). This finding was viewed by some researchers as evidence of the existence of tumor stem cells, not only by functional assays, but also by appearance. These tumor stem cells eventually became known as 'embryonal carcinoma cells' and appeared as small, tight colonies in vitro with prominent nucleoli and a thin dark cytoplasm. Injecting these cells into a mouse host would trigger the development of tumors with a wide variety of phenotypes, thereby validating the existence of tumor stem cells. Further experimentation with teratomas resulted in the identification and development of antibodies capable of specific recognition of embryonal carcinoma cells in tumor biopsies from both mice and humans. The stage-specific embryonic antigen 1 (SSEA1) could identify mouse embryonal carcinoma cells, while SSEA3 and SSEA4 could identify human counterparts.

Unfortunately, embryonal carcinoma cells are difficult to control and more than a few contributed to tumor formation after transfer into mouse blastocysts; however, many of the same molecular tools used to identify and isolate embryonal carcinoma cells proved to be valuable when isolating normal stem cells from mice and humans (Solter, 2006). Once this transition had been made, scientific interest in teratomas faded. The crucial discoveries that ushered in the modern era of stem cell research were (1) the discovery of stem cells resident in normal tissues, (2) the ability to maintain viability of these stem cells in vitro with a feeder layer, such as a single layer of mouse fibroblast cells adhered to the bottom of the culture dish, and (3) the prevention of differentiation using leukemia-inhibiting factor (LIF) and the subsequent in vitro expansion of a stem cell line.

The current definition of a stem cell depends on the number of different cellular phenotypes it can generate (Solter, 2006). A totipotent stem cell can generate all the cellular phenotypes that will ever appear in an organism, while a pluripotent stem cell is capable of generating multiple cellular phenotypes from all three germ layers. Multipotent stem cells, however, are much more limited and the cellular phenotypes it can generate are generally restricted to a subset of phenotypes associated with one or two germ layers. For example, researchers were able to show that totipotent stem cells from mice were capable of contributing to the formation of germ cells, in addition to most if not all somatic cells in a mouse body, and could thus be passed on from generation to generation; however, researchers have been unable to prove the existence of totipotent human stems cells.

In the absence of totipotent human embryonic stem (ES) cells many researchers turned toward investigating the possibility that somatic cells could be reverted to pluripotency (Easley, Latov, Simerly, & Schatten, 2014). This considerable body of research has produced human induced pluripotent stem cells (hiPSCs), which can give rise to a limited number of different phenotypes. These cells cannot generate phenotypes from all three germ layers and are therefore not a true pluripotent stem cell, but researchers have revealed that these cells are multipotent and capable of generating multiple cellular phenotypes closely related to the tissue of origin. Current efforts are directed towards isolating, reverting, and controlling the differentiation pathways, thereby creating a possible therapeutic strategy to repair damaged or diseased tissue. The development of pluripotent progenitors from somatic cells also avoids the many moral and ethical objections concerning the harvesting of stem cells from fertilized human embryos. The other advantage of generating hiPSCs is that the patient can be both donor and recipient, which essentially eliminates the risk of graft vs. host disease (GvHD).

Types of Stem Cells

There are two general classes of human-derived stem cells: embryonic and adult (Ding, Shyu, & Lin, 2011). Of these two general classes, only stem cells derived from fetal tissue have raised significant ethical and legal…

Sources Used in Documents:


ANA. (2007). American Nurses Association Position Statement on Stem Cell Research. Retrieved 13 Mar. 2014 from

ANA. (2009). ANA comments on stem cell research. Retrieved 13 Mar. 2014 from

Armstrong, A.E. (2006). Towards a strong virtue ethics for nursing practice. Nursing Philosophy, 7, 110-124.

Arnason, V. (2010). Bioethics in Iceland. Cambridge Quarterly of Healthcare Ethics, 19(3), 299-309.
Bevington, L.K. & CBHD Research Staff. (2009). An overview of stem cell research. Center for Bioethics & Human Dignity, Trinity International University. Retrieved 13 Mar. 2014 from
CACHC. (2001). Cloning Californians? Report of the California Advisory Committee on Human Cloning. Markkula Center for Applied Ethics, Santa Clara University. Retrieved 13 Mar. 2014 from
National Institutes of Health. (2002). Stem cell information. Stem cell basics. Retrieved 9 Mar. 2014 from
NIH. (2009). Stem cell information: Stem cell basics. VII. What are the potential uses of human stem cells and the obstacles that must be overcome before these potential uses will be realized. Retrieved 13 Mar. 2014 from
NIH. (2012). Stem cell information: Stem cells and diseases. Retrieved 15 Mar. 2014 from
Salk Institute. (2009). Salk News Release: Umbilical cord blood as a readily available source for off-the-shelf, patient-specific stem cells. Retrieved 9 Mar. 2014 from

Cite this Document:

"Debating The Ethics Of Stem Cell Research" (2014, March 15) Retrieved August 13, 2022, from

"Debating The Ethics Of Stem Cell Research" 15 March 2014. Web.13 August. 2022. <>

"Debating The Ethics Of Stem Cell Research", 15 March 2014, Accessed.13 August. 2022,

Related Documents
Stem Cell Research Should Have More Government
Words: 2639 Length: 8 Pages Topic: Government Paper #: 86899350

Stem Cell Research Should Have More Government Funding The topic argument "Stem cell research government funding." For paper, construct argument defending a claim policy. Remember argument based a claim policy, writer seeks solve a problem establish a problem exists, part argument entail claims fact Stem cell research should have more government funding A stem cell can be defined as type of cell that can be found in many body tissues. Stem cells can

Stem Cell Research Imagine That
Words: 1538 Length: 4 Pages Topic: Disease Paper #: 30703366

S. Law." Stem Cells at the National Academies. 2008. March 27, 2008. Thomson, James a., et al. "Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells." Science Express. Vol. 318. no. 5858, pp. 1917-1920: November 20, 2007. Yamanaka, Shinya, et al. "Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors." Cell. 131: 1-12.. November 30, 2007. March 27, 2008. What are the potential uses of human stem

Stem Cell Research Embryonic Stem
Words: 1159 Length: 3 Pages Topic: Disease Paper #: 98930137

" He argues that it is wrong to use these embryos even though they will just be discarded and wasted anyway. For this reason, people with grave diseases and disabilities argue that Bush needs to change his stance. CONCLUSION Stem cell research is incredibly important and should be fully examined so that we can do as much as possible to find cures and alleviate human suffering (Feinstein, 2004). It is important that

Stem Cell Research Continues to
Words: 1648 Length: 5 Pages Topic: Disease Paper #: 55510982

Protecting the rights of the one and sacrificing the lives of many is a sensitive subject, especially when the sides cannot even agree upon whether or not the one should have rights or not. It would seem that the establishment of researching guidelines that prevents the harming of a subject, for research purposes, has set a precedent, and that this violates right to know laws, as there is no

Stem Cell Research Embryonic Stem-Cell
Words: 3558 Length: 8 Pages Topic: Biology Paper #: 2791973

(Condic, 31) Scientists visualize immeasurable value in the application of embryonic stem cell research to comprehend human growth and the development and healing of ailments. More than 100 million Americans are ailing from the diseases that subsequently might be dealt more successfully or even cured with embryonic stem cell procedure. Majority of the researchers consider stem cell research as having large prospects for healing human ailments ever since the

Stem Cell Research: The Development of Human
Words: 1661 Length: 5 Pages Topic: Government Paper #: 86767471

Stem Cell Research: The development of human embryos is largely attributed to the formation and development of stem cells. This is due to the fact that stem cells usually transform into several organs and tissues as the embryo develops into a fetus. Therefore, stem cells are the foundation or source for all internal and external human organs and tissues. Actually, many researchers believe that these stem cells from the embryo can