Genetics Case Study
Genetic Case Study: The Rita and Peter Trosack and Tay-Sachs Disease
Genetic testing is becoming a much more common practice in medicine today. This presents a unique set of challenges for medical professionals in virtually all specialties. The practical aspects of determining which test to order, and in interpreting the result accurately in the context of the family history, can be difficult.
Additionally, the ethical conundrums that frequently present themselves when genetic risk assessment and/or genetic testing is being considered can be daunting. These challenges present real concerns for medical professionals and patients alike.
Included in this paper is a review of some of the practical and ethical complexities associated with genetic testing. Pretest and posttest genetic counseling is also emphasized as an important and essential process in today's medical practice.
The Interdisciplinary Team
The interdisciplinary team members should include an obstetrician, a genetic counselor, a psychologist/psychiatrist, geneticist and a neurologist. Each of these team members would play an essential role in the Trosacks' care. The obstetrician would attend to the pregnancy of Rita Trosack, the genetic counselor would give advice on the prenatal genetic testing; the psychologist would attend to the psychosocial concerns of testing, while the geneticist would inform the Trosacks on the social, ethical and legal implications of their choices for themselves and the baby. The pediatric neurologist would help with the care of the baby once it is born.
Each team member was chosen for the contribution they would provide in helping the Trosacks understand the implications of genetic testing for themselves and the baby. The burden on the Trosacks is quite large in this case and would extend to other family members who are feeling the psychological effects of a positive prenatal test for Tay- Sach's disease.
Due to the complexities involved in genetic testing in addition to the far-reaching effects of a genetic test result for both the patient and his/her family, genetic counseling is an integral part of the genetic testing process. Genetic counseling is defined as a communication process that deals with human problems associated with the occurrence or risk of occurrence of a genetic disorder in a family. The genetic counseling process includes information gathering, establishing or verifying diagnosis, risk assessment, information giving, and psychosocial counseling.
Teaching Plan In the case of the Trosacks, with Peter's paternal grandparents having one daughter and one son dying of unknown causes, the probability that the Tay-Sachs gene is in his family is high. Rita also has paternal grandparents who had a son that died of unknown causes. Genetic diagnosis: Both Peter and Rita carry the recessive allele for the Tay Sachs gene and both alleles appeared in the fetus. Tay-Sachs disease is an autosomal recessive lysosomal storage disorder with progressive neuronal accumulation of GM2 ganglioside caused by mutations in the HEXA gene resulting in a defect of hexosaminidase A (Hex A). There are 3 clinical types: infantile (acute), juvenile (subacute), and adult-onset (chronic).
The geneticist would disclose the following about the carrier frequency of Tay Sachs in Irish-American and Polish-American populations. From data collected in a North American Tay-Sachs disease (TSD) heterozygote screening program, the TSD carrier frequency among 46,304 Jewish individuals was found to be .0324 (1 in 31 individuals). This frequency is consistent with earlier estimates based on TSD incidence data. TSD carrier frequencies were then examined by single country and single region of origin in 28,029 Jews within this sample for whom such data were available for analysis. Jews with Polish and/or Russian ancestry constituted 88% of this sample and had a TSD carrier frequency of .0327. No TSD carriers were observed among the 166 Jews of Near Eastern origins. Relative to Jews of Polish and Russian origins, there was at least a twofold increase in the TSD carrier frequency in Jews of Austrian, Hungarian, and Czechoslovakian origins (Petersen et al., 1983).
Additionally, previous reports have found that non-Jewish-Americans with ancestry from Ireland have an increased frequency of heterozygosity for Tay-Sachs disease, although frequency estimates are substantially different. In a recently published study, the frequency of heterozygosity for Tay Sachs disease (TSD) among Irish-Americans was determined, who were referred for determination of their heterozygosity status and who had no known family history of Tay Sachs disease or of heterozygosity for these conditions. Of 610 nonpregnant subjects with Irish background, 24 TSD heterozygotes were identified by biochemical testing, corresponding to a heterozygote frequency of 1 in 25 (4%; 95% CI, 1/39D1/17). Samples from 21 Irish heterozygotes were analyzed for HEXA gene mutations. Two (9.5%) Irish heterozygotes had the lethal 11 IVS-9 GR A mutation, whereas...
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now