Shale Gas Analysis
What is shale gas?
According to Alexander et al., (2011), shale gas refers to a natural gas that stored in organic-rich, fine-grained rocks, including shale, laminated siltstone, or mudstone. It contains a mixture of hydrocarbon gases, majorly ethane, and methane. The gases are tightly locked within the pore spaces of the sedimentary rocks. The reservoirs of the shale gas have features such as low impermeability to clay content and, small grain sized contents. The term shale does not focus on a specific rock, but rather the rocks that have fine-grained particles that are smaller than the coarse-grained particles such as siltstone and carbonate rocks among other rocks. The generation of the shale occurs through various processes that include primary and secondary thermogenic degradation alongside biogenic degradation of the organic matter. The occurrence may also occur in a combination of all of the above mechanisms. The formation of shale gas occurs through a complex process that takes years (Andrews, 2013). The process of formation begins with the deposition of material consisting of a mixture of clay and minerals in deep waters such as lakes, seas, and oceans. The material also combines with algae, plankton, and plant matter during their burial. As the mud changes into shale during its shallow burial, bacteria act on the available organic matter resulting in the release of biogenic methane as a byproduct (Bakshi, 2012).
What are shale gas reservoirs?
Shale gas originates from a source rock with hydrocarbons that are generated following the burial of clay, minerals, algae, plankton, and plant matter. The hydrocarbons migrate from the original rock via carrier beds and accumulate in the porous reservoir over time. The porous reservoir consists of carbonate and/or sandstone in discrete traps that are located on the structural high on the margins of the center basins. The low permeability of the rock that acts as the source of the gas makes it trap the shale gas and prevent it from escaping towards the surface of the earth. The gas can also be held in the natural fractures below the surface of the earth alongside the pore spaces of the sedimentary rocks (Berman, 2009). In addition, Bulletin & Norton (2003) recognize that the gas can be absorbed into organic material that can be processed to release the stored gas. Moreover, Issler et al., (2002) states in their article that the shale gas can be adsorbed to the surfaces of the minerals within the natural fractures and/or pore spaces and absorbed to mineral surfaces of the matrix rocks. The existence of the shale gas in fractures is obtained using methods such as multi-stage fracturing and drilling horizontal wells.
Defining characteristics
Geologists consider specific geochemical characteristics to evaluate the ability of the shale to have the desired production potential. The core data acts as the major source of the features of evaluating the abilities of the shale rock under consideration. Methods such as downhole sensors and calibration of the log data are effective in allowing the geologists determine the potentialities of the shale rock (Ross & Bustin, 2008). In specific, they consider the ability of the shale rock to meet the characteristics of shale resource that include the gas volume and capacity, mineralogy, permeability, thermal maturity, and total organization carbon (TOC). Total organic carbon governs the potential of the shale rock to provide the desired amount of shale gas. Therefore, rocks with high TOC values are rich in shale gas, while those with low values have less shale gas content (Lee et al., 2011).
Shale rocks have features that vary significantly between the reservoirs and within the reservoir due to the variety of materials and fabric anisotropy possessed by the organic-rich shale. The elastic characteristics of the shale gas make it to have strong anisotropic properties. The degree of anisotropy correlates with the amount of organic contents and clay in the parent rock. Vertical Young's modulus and velocity also play a role in influencing the anisotropy of the shale rocks. Significant evidence shows that the shale gas has a relatively stronger anisotropy irrespective of its limited TOC content of less than six percent. Shale rock considered a reliable source of shale gas should have high gamma-ray values. High Gamma ray value translates to high organic carbon content, thereby, a considerable source of shale gas (Shebl et al., 2010).
Moreover, the content of the organic matter defines the features of the shale rock. Shale rock should be rich in total organic...
Shale Gas Reservoirs, Resource Estimation and Recoverable Volumes What is Shale Gas? Shale gas is best described as rich in organic content and fine-grained (Bustin, 2006). Shale, is however a very broad term, and gas found in any reserve is trapped in the layers of sediment alternating between clastic and sandstone or carbonates. Shale usually denotes fissile mudstone containing mm scale laminations of >50% silts and clays below 1/16mm (1% TOC, high
The growing opposition to the shale gas industry has conflicted with the need for domestic independence on energy and a reasonable debate is understandably created. Like a Pandora's box, a great and helpful technology has been afforded to the people of this country in the form of hydraulic fracturing, however this technology must be tempered in order for the true and real benefits to be realized. Debate and opposition on
Future Supply and Demand of Natural Gas The technology developed in the United States has become available for application in other countries mainly through efforts of major service companies. Until the mid 1990s, Canada's gas production was predominantly from conventional gas formations. This conventional gas filled the available pipeline capacity and unconventional gas resources, which are more difficult to produce, were largely ignored. However, as pipeline capacity was expended and
Regulating Oil and Gas Drilling and Transport The American economy runs on energy produced from oil, coal, natural gas, hydroelectric power, nuclear power and renewable sources like solar and wind energies. In fact according to a report in the Congressional Research Service, oil provides the United States with 40% of its total energy needs. It is used in myriad ways, providing "…fuel for the transportation, industrial, and residential sectors" (Ramseur, 2012).
D.). Following this period of exploration one must tackle the seismic interpreters with their predictions and drill exploration wells. If these wells are on-shore, then the cost can be modest, but if the prospected reservoir is off-shore in ultra deep water, drilling a well is very expensive and it becomes an interesting strategy game to balance the risk of drilling a dry well against the risk of missing a big cat.
Oil and Gas Development of Two Important Materials in Earth's Early History According to scientists, Earth began its life 4.6 billion years ago, when cosmic dust collided to form increasingly large particles. These particles, after millions of years of colliding and increasing in mass, eventually formed the Earth, with a mass similar to what it is today (5.9736 x 1024 kg or 5,973,600,000,000,000,000,000,000 kg) . Soon, the Earth's atmosphere began to form,
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now