It is because of the restriction or absence of these particles, sediments and nutrients that the study of these systems has not been as extensive and thorough as the concentration on the terrestrial structures when understanding the fate, sources and sinks of Co2 levels in the ecosystems and the plants structures (e.g., Drake and Leadley 1991). Researchers assert that "rooted macrophyte systems can be sources of CO2, Chapter 4 and other gases through microbial processing of organic matter in the sediments and direct emission from leaves" (Delaune et al. 1990).
Table 1. Total net primary production (NPP) from world systems (Modified from Valiela, 1984)
Area
NPP
Tot. NPP1
% of Total
% of Total
106 km2
gC m-2 y-1
X106mTC y-1
System
Global
Marine System:
Open Ocean
46
15,355
74.1
24.1
Upwellings
0.4
74
0.4
0.1
Continental shelf
27
2,997
14.5
4.7
Algal Beds & reef
0.6
2.7
0.9
Estuaries (exc. marsh)
1.4
3.7
1.2
Tot. Marine
57
20,726
32.5
Continental System:
Terrestr. Env.
39,540
91.7
61.9
Swamp and Marsh
2
1,110
2,220
5.1
3.5
Lakes and Streams
2
0.7
0.5
Tot. Continental
43,112
67.5
Total Global
63,838
Total Benthic (Aquatic Vegetation)
3,552 5.6
(i.e., algal beds, reefs, seagrasses, mangroves, swamps and marshes)
1 This is (NPP in gC m-2 y-1) x (area).
Fate of Fixed Carbon
The reason that the carbon cycle is so important to the overall global ecosystem is because change in the carbon structure can result in the overall marine structure of our planer. The researchers Borges and Gypens (2010) in their study write that the "accumulation of anthropogenic CO2 in the ocean has altered carbonate chemistry in surface waters since preindustrial times and is expected to continue to do so in the coming centuries. Changes in carbonate chemistry can modify the rates and fates of marine primary production and calcification. These modifications can in turn lead to feedback on increasing atmospheric CO2." They further write that the alterations and switches taking place in the nutrient levels and sources of the rivers can elevate the irregularity of carbon chemistry in the atmosphere. They assert that these alterations mainly occur due to the management regulation policies that have been implemented over the years. This is one aspect that influences the nutrient levels on the coastal areas more so than oceanic acidification as well irrespective of whether the influence is positive or negative (Borges and Gypens, 2010).
This is why the fate of carbon in the ecosystems is an important topic of discussion in today's era. Especially when talking the near-shore coastal structures, the carbon chemistry and structure may be affected by the loss of carbon to the coastal sediments through the regular burial or recycling processes in the systems or though the consumption of herbivores or mere transference to the shoreline to dissolve with other organic substances. All of these aspects if not controlled or managed properly can result in irregular carbon chemistry and changes that could in turn impact the nutrient levels on the coasts (Schwarz et al., 2000; Raven and Falkowski, 1999; Plus et al., 2001; Philippart, 1995a and b; Ralph et al., 2007).
The assessments of the rates of carbon burial near the coasts are again very irregular and range from the low levels of 0.2 to as high as 1 cm y-1. This ratio is common for burial in most marsh structures though. The reason for this is usually the soil and seabed near the shores is already rich in nutrients with more than 25% of the accreting substances being completely natural and organic, with the accumulation ratios of more than ca. 4 gC y-1 (Thom 1992). "Carbon sinks as peat accumulation are great in some systems on the East and Gulf coastal where marshes have been forming for 3,000-4,000 yrs" (Bricker-Urso et al. 1989). In another study the researcher explains that "other marsh systems are very new, and have little surface peat accumulation. For example, salt marshes in the Pacific Northwest are buried on the average of once every 300 yrs by ocean sediments as a result of large earthquakes and land subsidence" (Atwater 1987). Even though this subject is not analyzed in most researches, this entire process can very efficiently restructure the...
The only hope rests in being sensible and alert to the danger we have incurred upon ourselves. Going green and seriously focusing on renewable forms of energy is the only way that we could save this planet from the impending disaster. Bibliography 1) World Water Council, 'Water Crisis', retrieved Oct 1st, 2010, from, http://www.worldwatercouncil.org/index.php?id=25 2) U.S. Census Bureau, 'World Population Summary', retrieved Oct 1st, 2010, from, http://www.census.gov/ipc/www/idb/worldpopinfo.php 3) WWF, 'Water: Our Rivers Lakes
Fate of the Earth Unfortunately, even if someone could wave a magic wand that causes all of the nuclear weapons on earth to disappear, many believe that due to the depletion of natural resources, the earth would still be in danger of catastrophe, and humankind in danger of extinction. Jonathan Schell's book "Fate of the Earth" is an alarming portrait of the nuclear power in the world. Since the end of World
Several bubble-like structures of rather minute size had formed within the cellular material, the primitive streak was no longer visible at al,, and there was a clear circular definition of a darker area within the larger blastoderm. The carbon (charcoal) that had been added to the blastoderm had also undergone fairly significant changes, having been spread out over a wider area of the blastoderm. The three initial points of
These human actions that alter the living and nutrient conditions of soil organism include the repetitive tillage or burning of vegetation, soil erosion, overusing the land without replenishing it with humus or plant compost, clearing of forests. What can be done to solve this problem is to replenish the land with humus or plant compost, give the land rest after excessive use, planting of trees to reduce soil erosion
79). Not everyone is of a like mind when it comes to the potential benefits of magnetic levitation technologies, though. While research into maglev train technologies has been underway in the United States since the mid-1960s following the passage of the High Speed Ground Transportation Act of 1965, but much of the interest was limited to paper studies based on the perceived constraints involved in deploying maglev technologies (Uher, 1999).
(Macdonagh-Dumler and Pebbles et al. 1-14) The Marquette Range, which consisted of huge deposits of high quality iron ore, was discovered in the year 1844, the operations were initiated in the year 1846. Other ranges that were opened by the year 1910, included the Menominee, Gogebic, Vermilion, Cuyuna, and, the Mesabi range in Minnesota, in the year 1892. (Macdonagh-Dumler and Pebbles et al. 1-14) In the year 1844 the first great
Our semester plans gives you unlimited, unrestricted access to our entire library of resources —writing tools, guides, example essays, tutorials, class notes, and more.
Get Started Now