Flood Assessment In The Nerang Thesis

PAGES
30
WORDS
9418
Cite

The Gold Coast area comprises seven major catchment areas including the Tallebudgera, Currumbin, Nerang River, Coomera River, Pimpama River, South Moreton Bay, Sandy Creek and Broadwater area (Mirfenderesk, 2009). The Nerang River catchment is adjacent to the Tallebudgers catchment to the South. It is bordered by the Broadwater and Coomera River area to the North. The Nerang River catchment is adjacent to the Pacific beach area as well (Mirfenderesk, 2009).

Catchment areas have different levels of tolerance before the concentration of water to sediment reaches saturation levels, creating the likelihood of flooding in the area. The Tallbudgers, Currubin, and Broadwater area have time concentrations of approximately 3 hours, creating conditions favorable to short duration local flooding (Mirfenderesk, 2009). The Nerang River and Coomera catchments have time of concentrations from 3 to 92, making them susceptible to regional scale flooding of longer duration as well as short duration local flooding (Mirfenderesk, 2009).

By definition, local flooding results from heavy rainfall over short time period in a confined area. This type of flooding typically lasts only a short time until the run-off is able to drain. Regional flooding results from heavy rainfall over a number of river catchments. The flooding covers a large geographic area and may trigger flooding in areas susceptible to local flooding. Regional flooding may take a number of days to subside. Riverine flooding only occurs in a single river catchment and is confined to that river system (Mirfenderesk, 2009). Design of the catchment system must take into account all of the possible flooding scenarios in the area. This creates a challenge for city planners and engineers alike.

CSIRO Sustainable Ecosystems developed a system that considers the impact of climate change on Australia using a matrix that examine the affect of climate change on the infrastructure. (CSIRO Sustainable Ecosystems, 2006). According to this assessment, the impact of climate change on infrastructure was assessed in terms of four different scenarios: buildings in coastal settlements, electricity distribution and transmission, water supply infrastructure in major cities, and port infrastructure and operations. The impact of climate change were evaluated according to the estimated economic shock associated with them. These estimates were assessed using models that extended the impacts from 2007-2030, 2031-2070, and 2071-2100. Conditions were assessed using seven different climate change scenarios and conditions.

According to the CSIRO Sustainable Ecosystems model, increased height and land penetration of storm surges would have a negative impact on the ability of current flood protection systems to prevent damage and harm to communities within 50Km of the Queensland coastline (CSIRO Sustainable Ecosystems, 2006). The magnitude of the potential damage is considered low to moderate at the current time, but is expected to increase to moderate to high during the years 2031-2070, with some areas experiencing moderate to extreme potential for severe flood damage. The failure of all major infrastructure systems along the Queensland coast was expected to suffer similar risk potential for damage from flooding (CSIRO Sustainable Ecosystems, 2006).

There are many variables that could affect the outcome of the modeling scenarios. However, this model agrees with many of the other modeling scenarios discovered throughout the course of this research. These models agree that the potential for damage due to coastal flooding is expected to increase significantly in the time period from 2030-2070. This makes the evaluation and improvement of existing flood protection systems essential to the sustainable development of Queensland coastal communities. Developers must take the predicted increase in coastal flooding into consideration as they plan for the future development and economic expansion of coastal areas.

2.2. Climate Change Prediction in south east Queensland (2030-2070)

Climate change is expected to increase the severity and frequency of floods in the Gold Coast areas, adding to the impact of an already flood prone area (Mirfenderesk, 2009). Many factors affect the accuracy of long-range predictions of the effects of climate change. The most important factor is that humans can take measures to reduce the effects of climate change. However, from an emergency planning perspective and flood protection planning position, one must design for the worst-case scenario.

...

Many of the models are based on opinion and it is difficult to find a realistic prediction. Estimates range from conservative to alarmist. According to a recent media release, by the year 2060 to 2070, tides are expected be 40-50 cm higher than current average springtime tides (Coulter, 2009). Kling Tides in spring of 2009 gave Gold Coast residents an idea of what future rises in tide would mean for many local landmark, piers, beaches, and homes (Coulter, 2009). The information gathered during these events will be helpful for the future modeling of flood plans and for city development planners.
The most relevant factors to consider in Gold Coast, Queensland flood prediction is the amount of average rainfall, the sea level, and the frequency and intensity of storms. These three factors have the greatest influence on local and regional flooding in the area. The exact effect on local areas depends on their proximity to the coast, and their proximity to the river basin. These three factors will be used to estimate the flood frequency and intensity in the current research model.

The changing climate will have a different impact on every part of the world. However, for everyone, the effects of climate change will first be felt through changes in water supply. In a recent report, the DHI Group reported that in Australia and New Zealand water security problems are expected to intensify by the year 2030. Shortages will be the result of reduced precipitation and increased evaporation. Coastal development will increase the risks of flooding from sea level rise and an increase in the frequency and intensity of coastal storms (DHI Group). Climate change is expected to increase both rainfall and the severity and intensity of storm in the Southeastern Queensland and Northern New South Wales coastal areas (Abbs). This will place communities in these areas at greater risk for major flood events.

2.2.1.

Rainfall Totals

Mean annual rainfall totals for Southeast Queensland average 1,354 mm per year. Some of the highest rainfall occurs in the Nerang River catchment (Gold Coast City Council, n.d.). Rainfall events cause significant damager in Australia due to flooding. Extreme rainfall events are most significant along Australia's Eastern coastline, which also corresponds with the highest population centers in Australia as well (Abbs). Trend analysis on rainfall in Southeastern Queensland and Northern New South Wales found that rainfall in the area has been steadily increasing over the past decade. However, it was also found that when larger regions were considered, the degree of the increase was decreased as a result of the averaging effect. Considering a smaller local area increased the amount of average rainfall in the area (Abbs). One must be cautious of this factor when analyzing major meteorological trends. Regression analysis of a specific selected area over time will provide the most accurate assessment of rainfall trends in a particular area.

Rainfall simulation for a selected area of Southeastern Queensland and Northern New South Wales projected current rainfall in the area and compared it to the rainfall in the year 2040. The model used the Regional Atmospheric Modeling System (RAMS) to produce a compressible non-hydrostatic model using data from CSIRO Mark 3 GCM. Terrain was interpolated from the USGS 30 second data set (Abbs). The system was tested using data from 1960-1999 to check for accuracy. The modern underestimated the intensity of extreme rainfall, but the predicted and actual rainfall estimates were close enough to be considered reliable for making future predictions. The 2040 prediction found that rainfall tended to increase over the mountainous regions, but decrease everywhere else (Abbs). However, several increases were found near coastal areas, such as north of Brisbane and south of Cape Byron (Abbs).

Long-term rainfall predictions are subject to a considerable amount of error. Many variables can affect the outcomes and accuracy of the predictions. These predictions are based on historical data and many factors can influence the final outcome and results. Trend analysis over the period from 1950-2004 that examined the amount of summer and winter rainfall in the Southeastern Queensland coastal area demonstrates that as global temperatures increased, the amount of rainfall in the area decreased (Whetton, McInnes, & Jones et al., 2005). Temperatures are expected to warm significantly in the area between now and 2070, but rainfall is expected to decrease regionally (Whetton, McInnes, & Jones et al., 2005).

Although rainfall has demonstrated a historical trend of increasing in over the past 100 years, future predictions indicate that rainfall is expected to decrease in the area in the next 60 years. General statements regarding rainfall and climate would lead the researcher to expect rainfall to increase in the area, but when one examines specific local data, this trend does not hold true for the eastern coast. Rainfall predictions are highly sensitive to temperature projections and to the model selected for the analysis (Whetton, McInnes, & Jones et al., 2005). A majority of the models…

Sources Used in Documents:

References

Abbs, D. (n.d.). The Effect of Climate Change on the Intensity of Extreme Rainfall Events.

CSIRO Atmospheric Research. White Paper.

Boesch, D., Field, J., & Scavia, D. et al. (2001). The Potential Consequences of Climate

Variabiltiy and Change on Coastal Areas and Marine Resources. NOAA's Coastal Ocean
Program. Decision Analysis Series Number #21. Retrieved 21 oct 2009 from http://www.cop.noaa.gov/pubs/das/das21.pdf
Retrieved 22 Oct 2009 from http://www.wsdot.wa.gov/research/reports/fullreports/524.1.pdf
Retrieved 10 Oct 2009 from http://www.epa.qld.gov.au/register/p00575aa.pdf
from http://www.goldcoast.qld.gov.au/attachment/nerang_flood_history_infosheet.pdf
209) http://www.bom.gov.au/hydro/flood/qld/brochures/south_coast/nerang.shtml
Release. Retrieved 10 Oct 2009 from http://www.csiro.au/news/King-Tides-Future-Sea-Level-Rise.html
Ecosystems. Garnaut Climate Change Review. Retrieved 10 Oct 2009 from http://www.garnautreview.org.au/CA25734E0016A131/WebObj/02-
Gold Coast City Council (n.d.). The Nerang River Catchment. Retrieved 12 Oct 2009 from http://www.goldcoastcity.com.au/attachment/factsheet_nerangriver.pdf
Oct 2009 from http://www.goldcoastcity.com.au/attachment/fss_meeting_10.pdf
2006. Retrieved 11 Oct 2009 from http://www.goldcoast.qld.gov.au/t_news_item.aspx?pid=6132
fromhttp://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-chapter11.pdf
Retrieved 10 Oct 2009 from http://www.ema.gov.au/www/emaweb/rwpattach.nsf/VAP/(966BB47E522E8480
McInnes, K., Walsh, K. & Pittock, a. (2000). Impact of Sea-level Rise and Storm Surges on Coastal Resorts. CSIRO Tourism Research. Retrieved 9 Oct 2009 from http://www.cmar.csiro.au/e-print/open/mcinnes_2000a.pdf
from http://www.publish.csiro.au/Books/download.cfm?ID=2260


Cite this Document:

"Flood Assessment In The Nerang" (2009, October 15) Retrieved April 20, 2024, from
https://www.paperdue.com/essay/flood-assessment-in-the-nerang-18596

"Flood Assessment In The Nerang" 15 October 2009. Web.20 April. 2024. <
https://www.paperdue.com/essay/flood-assessment-in-the-nerang-18596>

"Flood Assessment In The Nerang", 15 October 2009, Accessed.20 April. 2024,
https://www.paperdue.com/essay/flood-assessment-in-the-nerang-18596

Related Documents

Meteorology The hazards that small plane pilot's face from the vagaries of weather is legendary. Some crashes like the aircraft crash of John F. Kennedy Jr. At the coast of Massachusetts in Jul 16, 1999 relates to 'conspiracy' theories, fear of sabotage and even to terrorist action. But there always will be the simple explanation of what went wrong, especially in a case where the aircraft is very vulnerable to the

Climate/Meteorology Nitrogen and oxygen are the most abundant gases in the Earth's atmosphere, accounting for a full 99% of its content. After these two gases, water vapor is second highest in concentration, followed by carbon dioxide, methane, and nitrous oxide. Ozone gas is also present in the atmosphere, along with a few other less common gases like Argon. The four "spheres" of the atmosphere include the troposphere, the stratosphere, the mesosphere, and

Weather is one of those magical subjects that almost everyone feels comfortable talking about no matter where they and no matter to whom they are speaking. It affects one's mood in both a negative and positive fashion and its effects have been felt throughout history. It is a world unifying factor that is completely beyond the control of anyone. As compelling as weather has been throughout history little has been

Even with the fact that Ancient Greeks obviously had a limited understanding of winds, it is nonetheless intriguing to look at how they perceived conditions in which winds are more likely to occur. Wind speed is faster above the ground because it encounters less friction and winds move very fast when there is nothing to slow them down. This is why wind turbines are mounted on top of towers. Anemometers

Weather "From the beginning, slowness defined it. Tedious, plodding, grinding, unrelenting slowness…And when the storm system took an unexpected turn as it spread into the central Plains, the table was set for violent weather," (Hoedel & Gutierrez, 2012). Hoedel & Gutierrez (2012) are describing the mysterious origins of the 2011 Joplin, Missouri tornado, one of the deadliest in American history. After its tumultuous journey "down the Pacific Coast, across the California

Cox, Forbes & Harris for example claim that: The scope of the GUM is generally restricted to models with a single output quantity, so that metrology fields involving complex quantities are not directly covered. The presentation of the material is sometimes criticized and a number of documents aimed at providing a more tutorial explanation have been published [1, 26]. If Bayesian methods are to be used widely in metrology, they