Predictive Analytic Tools To Gain Term Paper

Length: 16 pages Sources: 12 Subject: Business Type: Term Paper Paper: #34057851 Related Topics: Spss, Data Mining, Multivariate Analysis, Value Creation
Excerpt from Term Paper :

As Christopher Hosford (2009) best put it, "to marketers, lists are still important but the uses to which they are put seem to be in transition."

With the aid of predictive analytics, marketing activities make a transition from the simple identification and attraction of customers, to more complex endeavors of customer loyalty and retention, generation of sustainable revenues as well as other elements of marketing ROI (return on investment). This trend has had a direct impact on the secondary industry sector of list construction in the meaning of an increasing popularity and demand for these specific services. This in turn led to an increasing offer of listing services and the increase of competition within the field.

But given the complexities and requirements of the modern day business environment and social community, a necessity arises in the continuous assessment and upgrading of the databases and the information they contain. Examples of how the databases could be maintained and upgraded include the sustained gathering of new information, the more in depth segmentation of the consumers or the identification of current and emergent responsibilities (Hosford, 2009).

Predictive analytics and safety

Craig Lawson (2010) assesses the issue of predictive analytics from a rather intriguing standpoint -- the well-being of the equipment. He argues that through the use of predictive analytics, organizational leaders can identify errors and other problems with equipments early on. This would not only increase staff, operation and consumer safety, but would also reveal an ability to reduce maintenance costs by identifying and repairing damages early on, rather than waiting until the equipment problem is major and requires major investments to fix.

In order for predictive analytics to increase equipment safety and as such generate the adjacent benefits, they need to be supported by technologies -- both software as well as hardware. One such application is the SmartSignal Predictive Analytics software applications which is able to identify rod drop problems when other traditional applications cannot detect the problems that early on. When companies do not wish to invest tremendous sums of money into the development of their own predictive analytics tools and methodologies, they are presented with the opportunity of hiring third party firms which offer the respective services. Through extrapolation, this could constitute a specific case of penetration into a specific market of equipment safety.

Lawson's study is conducted within the pipeline industry, but the findings are relevant and can be extrapolated to include the entire manufacturing industry where increased usage of manufacturing equipments is made. Here, organizational leaders can predict problems and resolve them early on, without delays in operational processes or even without the incurrence of casualties. "This innovative technology allows you to migrate your maintenance strategy to a predictive, proactive strategy, where the morning water-cooler talk is about how to prevent an identified problem from happening, not how to fix one that already has occurred" (Lawson, 2010). Also as an extrapolation, predictive analytics can be used to penetrate the niche market of safety tools and equipments.

Predictive analytics to create customer value

A first application of predictive analytics is that it allows firms to better understand the customers. Traditionally, it was believed that customers could be stimulated solely through price reductions. The collection and processing of customer information with the use of predictive analytics however has revealed that not all customers are price sensitive, but that a large portion of them are driven by other elements.

Don Murphy (2002) argues that at the level of the marketing department, predictive analytics are presented as customer relationship management (CRM) analytics. Through them, companies collect customer data and then synthesize this data. The result is an increased ability to understand and predict customer behavior, which in turn can materialize in organizational success. Murphy explains: "With the right tools and a little intuition, organizations can increase profitability by leveraging customer information to anticipate customers' needs and influence their behavior. By consolidating customer information from within and beyond an enterprise, organizations establish the groundwork for modeling and predicting customer behavior. Quality information gathered from numerous customer-facing...


Companies can the use these models to segment and target customers for marketing campaigns, service programs and customer loyalty and churn analyses."

A relevant example is offered by the hospitality industry, where companies offer services rather than material products. This virtually means that the success of the respective entity -- hotel, entertainment facility and so on -- depends directly on its very ability to understand and serve its customer. These two goals are best achieved through intense communications with the customers and through the implementation of a wide array of strategies that generate and support customer loyalty.

In order to use predictive analytics to generate more customer value, Davenport, Harris and Morison (2010) have identified the necessity for the implementation of a six stage model. This model resembles a ladder of marketing predictive analytics and it is achieved as follows:

The construction and maintenance of an adequate customer database which includes information on all organizational customers

The segmentation of the market into target audiences based on a series of demographic and otherwise criteria. At this stage, it is important to understand the differences between various consumer categories in order to present them with different offers based on the elements which satisfy their specific needs.

The development of organizational strategies which create points of difference. At this stage, it is pivotal to respond specifically to the actions, decisions, needs and so on of the customers.

The management of the marketing campaign in an adequate means to promote the company, the product and to attract and retain the customers. At this level, it is necessary to keep a faithful track of all previous customer decisions in order to be able to personalize the product / service offering.

The creation of predictive models based on the observation of the past events. Throughout this stage, the company strives to foresee the future actions of the customer based on the observation of his past actions and decisions.

Finally, at the sixth and last stage, the company is expected to make a real time offer in the meaning that it is expected to create and offer a customized product / service for the customer (Davenport, Harris and Morison, 2010).

Don Murphy (2002) takes his analysis one step further and reveals the three specific steps companies need to undertake in order to predict the behavior of customers. In this order of ideas, at a primary level, it is required that the economic agents profile their customers. In order to create the profile, company members assess the behavior of their customers in specific circumstances -- especially those of interest to them. They use a multitude of sources of information, such as internal customer data previously collected, purchase information, call center information, performance indicators or other third party data.

At a secondary level, the company is modeling the customer data. "By using data mining on the profile information, analysts can uncover the most relevant characteristics of the customer segment being analyzed" (Murphy, 2002). Finally, at the third level, the economic agent engages in scoring operations. "Analysts use predictive analytics to score existing customers by comparing them to the model. Those most closely matching the characteristics included in the model are most likely to exhibit the targeted behavior" (Murphy, 2002).

While not referring specifically to predictive analytics, Alexei Sarnevitz (2008) mentions that a successful relationship with the customer is only achievable if both of two necessary conditions are met. The first of these conditions is that of segmentation, which has already been discussed and will not be focused on at this stage. The second condition is that of automation, which, in Sarnevitz's view, is the key to organizational success. And by the key to organizational success, he refers to the high degree of knowing the customer up to a point at which a long-term bond is created between the parties. "The ultimate goal is more than having the right product in stock at the right price; it's about tailoring the entire shopping experience to create an emotional bond with the customer. In effect, this means turning today's multi-channel retail enterprise -- in a consumer's eyes -- from "the store" to "my store." [And this goal is achieved through automation]. Automation is the key to enabling the delivery of just the right offer to each consumer, deploying exactly the right assortment to each store and optimizing the regular price for millions of SKUs. Examples include the latest marketing automation solutions that can target each consumer with relevant personalized messages or revenue optimization applications that determine optimal pricing for each item in every store" (Sarnevitz, 2008).

Predictive analytics to create customer value -- the case of the insurance industry

When predictive analytics was first implemented within the insurance industry as a means of creating customer value, its applications were limited and the immediate results were at least questionable in terms of…

Sources Used in Documents:

Neural networks which were used to uncover more complex relationships within the institution's database (Hosford, 2010).

A final example of how predictive analytics can be used to address a niche market is given by the pharmaceutical industry, in which the players have integrated predictive analytics to optimize the segmentation based on brand specific physicians. "InfoMedics, Inc., the patient feedback company, announced the launch of MD ScorecardTM, a new way of using unique predictive analytics and physician communication expertise to deploy InfoMedics' patient feedback solutions. The service is designed to help InfoMedics' pharmaceutical clients to optimize their physician target lists and to tailor their messaging" (Biotech Week, 2009).

All in all, predictive analytics emerges as a new tool based on already proven technologies and techniques. Its applications are various and present across industries and sectors. Predictive analytics can be used to generate competitive advantages and can also permit firms to establish themselves within niche markets.

Cite this Document:

"Predictive Analytic Tools To Gain" (2010, August 06) Retrieved November 29, 2022, from

"Predictive Analytic Tools To Gain" 06 August 2010. Web.29 November. 2022. <>

"Predictive Analytic Tools To Gain", 06 August 2010, Accessed.29 November. 2022,

Related Documents
Envision Business Analytic Impacting Business Society 10-20
Words: 590 Length: 2 Pages Topic: Business Paper #: 26396829

envision Business Analytic impacting business society 10-20 years? (i.e. personalized Business analytics will impact business and society tremendously in the next 10 to 20 years, a fact which is partially demonstrable via a retrospective of the role business analytics has impacted upon these two areas of life in the previous five to 10 years. Although analytics is certainly burgeoning in contemporary times, it will be nothing short of ubiquitous in

Management the 21st Century Has
Words: 3148 Length: 10 Pages Topic: Business Paper #: 93682023

Information that crawls into the databases or warehouse might be utilized for reasons beyond those initially planned by those filling and amassing the data (Phillips, 1997). Data that might be pleasing in quality for functional databases can be not viable in warehouses that confirm practical strategic business decisions. For case in point, the correctness of the analysis code in an insurance firm's functional database had been immaterial when disbursing insurance

Data Analytics Processes in Business
Words: 1563 Length: 5 Pages Topic: Information Technology Paper #: 92532326

The New Frontier: Data Analytics Effective use of data has become the basis of competition in the modern business world given that the concept of creating business value is not new. Businesses have always wanted to obtain insights from information in order to enhance their competitiveness. The focus on deriving insights from information is a critical factor in enhancing competition since it promotes better, factual, smarter, and real-time decision making among

Benefits of Business Analytics in an Organization
Words: 1578 Length: 5 Pages Topic: Sports - College Paper #: 71015201

facilitating change within an organizational setting, by outlining and recommending solutions that deliver value to stakeholders. It is the set of everyday jobs and practices employed to function as a connection among stakeholders to comprehend the system, strategies, and processes of an organization, and to reach solutions that help the organization to attain its objectives (IIBA, 2015). Business analysis consist of comprehending how organizations operate to achieve their objectives,

Big Data on Business Strategy
Words: 5673 Length: 20 Pages Topic: Business Paper #: 91933234

875). Often success introduces complacency, rigidity, and over confidence that eventually erode a firm's capability and product relevance. Arie de Geus (1997) identified four main traits for a successful firm; the first is the ability to change with a changing environment (Lovas & Ghoshal, 2000, p.875). A successful firm is capable of creating community vision, purpose, and personality, and it is able to develop and maintain working relationships. Lastly, a

Analytics and the Growing Dominance of Big
Words: 2022 Length: 5 Pages Topic: Business Paper #: 72116603

Analytics and the Growing Dominance of Big Data are Revolutionizing Strategic Decision-Making The level of uncertainty and risk that pervade many enterprises today is growing, as the dynamics and economics of markets are changing rapidly. The many rapid, turbulent structural changes in industries is also leading to a greater reliance on analytics and the nascent area of Big Data as well. The potential of this second area, Big Data, is in