Environmental Issues and Risk Management Research Paper

Excerpt from Research Paper :

. . political and law enforcement cronyism and corruption. . . And last, an surprising astonishing level of incompetence which symbolizes much of the authorized intelligence- meeting and investigative developments (Block, 1985, p.310).

This lack of enforcement taking part in helping with the waste especially after a natural disaster such as a tornado will possibly allow such practices as illegal dumping to last unchecked.

"The ideal answer to hazardous waste problems is to alter the industrial processes so that hazardous waste materials are not produced any longer"(Kiefer, 1981, p.51). Nevertheless, in all reality this is extremely unlikely. It would basically be almost impracticable to make any large alterations to plants that are already in process. Many believe that part of the solution will lie in how the government will deal with large organizations that are pertaining to hazardous waste. If the government were to provide tax breaks to those businesses who appropriately get rid of their hazardous waste this could possibly inspire companies to do the same. Also, if the government were to give tax breaks for organizations that are seeking a much better or more well-organized ways of dealing with toxic wastes then not only would individuals see an development in the current condition but most likely a step onward in the right direction of taking care of the hazardous waste issues that are afflicting the world today.

History has shown that possibly another possible solution is to have the government sponsor new projects on how to perhaps reprocess hazardous or toxic waste in a method that is productive and safe.

One method to recycling is to transport one company's waste to another corporation that can utilize it. One fruitful reuse of a waste material includes "pickle acid,." . . The pickle acid is moved to a power plant that will produce electricity with geothermal steam. The iron sulfate in the pickle acid thean reacts with the hydrogen sulfide which is found in geothermal steam to produce a mire of iron sulfide and sulfur; this sludge is a valued supplement to some soils (Kiefer, 1981, p.52,53).

If a waste can not be reprocessed in some way then there is the likelihood of splitting the hazardous materials it encompasses. These materials can then be separately preserved and perhaps made undamaging. This procedure will also aid to separate the hazardous materials and create them calmer for treatments that are concentrated.

It is imaginable that many could perhaps apply these new plans so that it can reduce the quantity of toxic waste that is discarded into the environment or that is exploited through natural disaster such as tornadoes. The problem with applying these kinds of plans would be the expenditure and cooperation on the behalf of the companies which create these hazardous derivatives. If the EPA would make it more promising for these companies to fall into compliance with ecologically friendly regulations and procedures then we would see a potential instant development that would be in the part of hazardous and toxic wastes.

With that said, it is not really impossible that people can fix societies current difficulties that are dealing with the appropriate disposal of toxic and/or hazardous waste, it is nevertheless very unconvincing. The readiness of large companies to make the costs that are necessary to resolve these difficulties is very low. Without a hand that is a help from the government to provide inducements to these corporations and to apply the current laws which administer toxic waste dumping it could possibly be a long time before we observe any gradual expansions on this setback. As for the areas that we have previously contaminated with our nations hazardous wastes there is little hope of ever revitalizing these places Many believe that as a nation, it must be see that by speaking to the problems with appropriate care and discarding of toxic wastes we are in actual fact in the saving of people's lives. Once the nation comes to this reality, the country can expect much more compression by the people for severer laws and stricter penalties of illegal dumping. With that said, there needs to be further research on what can be done to see a positive change that will affect the future of hazardous material/waste Contamination storage facilities control in case of natural disaster such as tornadoes.


Tornadoes yearly plagued the state of Missouri and cause significant damage to property and infrastructure. One of the greater concerns is hazardous material/waste contamination due to the destruction to associated storage facilities. The government of Missouri is researching facility sightings and construction practices to increase the survivability of hazardous material/waste storages facilities, to include the use of underground facilities and regulating above ground facilities to F5 level construction standards. These revised standards will greatly increase the survivability of these facilities and reduce the risk of hazardous material/waste contamination from future tornado events.

1.1.1 Definition of Construction Waste

Waste materials that are generated throughout the construction processes are usually mentioned to as construction waste. It has basically been the usual repetition to record the material waste from construction, demolition and renovation projects all together, which is indicated to in the literature as demolition and construction waste (C&D waste) or construction, redecoration and demolition waste (CRD waste). Conferring to Statistics Canada (2000) C&D waste is described as waste materials created in the procedure of construction, renovation or demolition of arrangements, which comprise buildings of all forms (both non-residential and residential) as well as roads and bridges. However, the definitions are different from region to region and from country to country. For example, the United States' Environmental Protection Agency (USEPA) definition of CRD waste includes land clearing debris as well. It is important to identify the dissimilarity that is between construction waste and C&D waste, as both of the waste streams are usually reported to have diverse characteristics, that results in a need for having different management choices for each. Therefore, this study will recognizes the definition of construction waste as "waste materials that are produced in the course of construction of arrangements; the structures comprise both non-residential and residential buildings as well as bridges and roads." More precisely, building construction waste and whether or not the facilities can survive disaster such as tornadoes is of main interest to the study. Normally, building construction waste stream entails of materials, such as brick, concrete, wood, cardboard, rubble, metals, floor tiles, drywall, and roofing materials.

.1.2 Construction Waste Generation

The harshness of the construction waste problem can be recognized from studies that were performed in various parts of the world on building waste material amounts. Skoyles (1976) recognized thirty-seven construction materials that have material wastages from 2 to 15% of the weight of the intended quantity of material. Bossink and Brouwers (1996) acknowledged consumptions of materials that are ranging from 1-10% of weight of the acquired material amounts, grounded on a study in Netherlands. Another study, that was based on the construction projects that was in Australia, signified material wastage to be around 2.5-22% of the whole material bought (Forsythe and Marsden, 1999). Pinto (1989) exposed that material wastes ranged from 1- 102% of its calculated weights, that based on the building construction business in Brazil.

Even though the percentages of waste from construction materials are different from district to district, the significant finding is that the amount of construction waste generation is important, irrespective of the location. Obviously, the kind of construction, construction technology and the regulations and rules that were disturbed by local authorities can have an influence on material wastages. It is unmistakable that the generation of construction waste has been snowballing over the years, generating a series of difficulties in numerous regions of Canada. The construction waste portion was approximately equal to 35% of the total municipal solid waste generation in 2001 (CCA, 2001). Being a part of an industry that is growing and due to high construction activities in Alberta, as the statistics confirm, there is a fast upsurge of demolition and construction waste generation over the time of 2000 to 2006. It is predicted that, in Alberta, 30-40% of C&D waste is emerging from constructions that are new. Nevertheless, the described landfill removal of construction waste materials has somewhat declined over time, stretching around to 22% (Alberta Environment, 2006) from 27% in 2003 (Verduga, 2004).

Figure 1.2 Composition of Construction Waste Residential


The study will take place in the state of Missouri which will involve The five largest cities in Missouri are Kansas City, St. Louis, Springfield, Independence, and Columbia and also the town of Joplin. The study can have some limited by the honesty of the citizens responses during the interviews regarding contamination storage facilities and how well they can survive tornadoes at their current protection levels . Other limitations will possibly be limitations that are set forth by the quantity of time available to manage the study, along with the time contributors that will be acknowledged in the study. The study was further limited to…

Cite This Research Paper:

"Environmental Issues And Risk Management" (2011, December 25) Retrieved August 23, 2017, from

"Environmental Issues And Risk Management" 25 December 2011. Web.23 August. 2017. <

"Environmental Issues And Risk Management", 25 December 2011, Accessed.23 August. 2017,